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Abstract

We study the effect of privately informed traders on measured high frequency price changes
and trades in asset markets. We use a standard market microstructure framework where exogenous
news is captured by signals that informed agents receive. We show that the entry and exit of
informed traders following the arrival of news accounts for high-frequency serial correlation in
squared price changes (stochastic volatility) and trades. Because the bid-ask spread of the market
specialist tends to shrink as individuals trade and reveal their information, the model also accounts
for the empirical observation that high-frequency serial correlation is more pronounced in trades
than in squared price changes. A calibration test of the model shows that the features of the market
microstructure, without serially correlated news, accounts qualitatively for the serial correlation in
the data, but predicts less persistence than is present in the data.
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1 Introduction

The arrival of news is widely thought to have an important impact on asset prices. Despite such
widespread belief, surprisingly little is known about the exact linkage between news and the
intertemporal regularities that characterize many asset prices. Perhaps the most pronounced
intertemporal regularity is positive serial correlation in squared price changes, detected via sto-
chastic volatility (SV) and generalized auto-regressive conditional heteroskedasticity (GARCH)
models, which has important implications for option pricing and conditional return forecasting.
Empirical specification of SV and GARCH models vary widely in the literature, which suggests
a need for theoretical guidance. We therefore derive the properties of transaction price changes
from a standard microstructure model that incorporates the random arrival of news. In partic-
ular, the model replicates three features of the high frequency data: serial correlation in trades
and squared price changes, and serial correlation in trades which is more persistent than serial
correlation in squared price changes. We then test implications of the model. In particular,
we derive that the market microstructure, without serial correlation in news, qualitatively ac-
counts for the serial correlation in hourly squared IBM stock prices, albeit with less persistence.
Our results therefore provide a theoretical explanation (and guidance) for much of the recent
empirical results on the volatility of financial assets.1

We derive the properties of prices and trading behavior at the level of individual transactions
from a repeated version of the asymmetric information model of Easley and O’Hara (1992). With
some probability informed traders receive a private signal, or private news. Because uninformed
(liquidity) traders are also in the market, private news is not immediately revealed by the trade
decisions of the informed. The specialist, who clears trade, accounts for adverse selection when
setting the bid and ask. As trade occurs, the specialist uses Bayes rule to update beliefs, and
so the bid-ask spread declines as informed traders reveal their information through trade. We
show that the bid-ask spread bounds the variance of transaction price changes. Because the
bid-ask spread is dynamic in response to the specialist’s learning, transaction price changes are
neither independent nor identically distributed. In particular, transaction price changes have
autocorrelated conditional heteroskedasticity (although not of GARCH form).
We assume that news arrivals are serially uncorrelated and so focus on the learning dynamics

that result from information-based trade. Of course certain events may lead to serially correlated
news; adding serial correlation into the exogenous news arrival process would augment the
correlation that arises from the learning dynamics alone.2 Perhaps surprisingly, we show that
information-based trade alone (without serially correlated news) accounts for high frequency
SV and two important related features of asset prices.3

The importance of private information as a determinant of asset price volatility is supported
by French and Roll (1986), who conclude that revelation of private information (rather than
public information or pricing errors) drives stock price changes. The entry and exit of informed

1Bollerslev, Engle and Nelson (1993) provide a survey of GARCH models; Ghysels, Harvey and Renault
(1996) provide a survey of SV models.

2Engle et al. (1990) find some evidence of serial correlation in public news; although serial correlation in
public news does not necessarily imply serial correlation in private news.

3Further, information-based trade can account for the positive contemporaneous relation between squared
price changes and trading volume, which is the focus of the economic models of Epps (1975) and Tauchen and
Pitts (1983).
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traders after the arrival of private information is a key component of our explanation. First,
the arrival of private news causes informed traders to enter the market, increasing the number
of trades relative to calendar periods in which no private news exists. As the informed continue
to trade until their information is fully revealed, informed traders enter and exit for stretches of
calendar time. This behavior induces serial correlation in the number of calendar period trades
(as well as trading volume), a feature documented by many authors (Harris, 1987; Andersen,
1996; Brock and LeBaron, 1996; Goodhart and O’Hara, 1997 page 96 provides a survey).
Second, because the squared price change is determined by the number of trades in the calendar
period and the variance of the price innovation for each trade, positive serial correlation in trades
leads to SV. Because transaction prices have SV, the SV in calendar periods is not an artifact of
discrete sampling. Third, because the bid-ask spread bounds the variance of trade-by-trade price
innovations, the declining bid-ask spread reduces the serial correlation in squared price changes
without affecting the serial correlation in trades. Thus serial correlation is more pronounced
for trades than for squared price changes, also a well-known feature of the data (Harris, 1987;
Andersen, 1996; Steigerwald, 1997).4 This third feature has proven to be a puzzle that is
difficult to solve with traditional models that do not examine the properties of transaction price
changes.5

We also derive other volatility related testable implications of the market microstructure
model. In general, if the probability that the information advantage of informed traders is
not eliminated between adjacent calendar periods increases, then informed traders are more
likely to remain in the market in adjacent calendar periods. Thus the increase in trades and
squared price changes resulting from the presence of informed traders is more likely to remain
in adjacent calendar periods, increases the magnitude and persistence of the serial correlation in
trades and squared price changes. For example, we derive that the magnitude and persistence
of the serial correlation in trades and squared price changes increases as the sampling frequency
increases, because the information advantage of the informed is more likely to remain between
adjacent hours than adjacent days. We also derive that the magnitude and persistence of the
serial correlation in trades and squared price changes increases in markets where trade by the
informed accounts for a relatively small proportion of the total trades.
We then test implications of the model using hourly IBM data (filtered of time of day and day

of the week effects). The high frequency IBM data has all three empirical features of interest:
serial correlation in trades and squared price changes, and the serial correlation in trades is
more persistent. We calibrate the model to match certain moments of the IBM trade data. The
fitted model has all three features of interest, although the persistence in trades is one day in
the model rather three weeks in the data and the persistence in squared price changes is on
the order of minutes in the model as opposed to one or two days in the data. An alternative
calibration matches the persistence of the data, but then the magnitude is smaller than in the
data.
As we focus on the properties of transaction price changes, we are implicitly modeling high-

frequency calendar periods. Several researchers propose alternative explanations for stochastic

4Similarly, Tauchen, Zhang, and Liu (1996) report that a price change has more persistent effects on volume
than on squared price changes.

5In the analysis of Clark (1973), Gallant, Hsieh and Tauchen (1991), and Andersen (1996) the magnitude of
stochastic volatility is determined by, and so is proportional to, the correlation of trades or trade volume.
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volatility at lower frequencies. Timmerman (2001) shows rare structural breaks in the dividend
process and incomplete learning generate ARCH and SV effects in an asset pricing model.
Shorish and Spear (1996) show how moral hazard between the owner and manager of a firm
generates serial correlation in squared price changes in an asset pricing model. Den Haan and
Spear (1998) show how agency costs and borrowing constraints give rise to wealth effects that
yield serial correlation in squared interest rate changes. Serial correlation in such models does
not arise from the trading process, since the “no trade” theorems hold.6 While dividend-based
models provide an important step by directly explaining stochastic volatility at low frequencies,
these models cannot account for the stochastic volatility found in nearly all financial assets at
high frequencies. In contrast we explain how news (say about the dividend process) generates
high-frequency serial correlation through the trading process.
Section 2 presents an overview of the asymmetric information microstructure model. In

Section 3 we derive basic properties of transaction price changes. Section 4 contains our results
on the serial correlation of calendar period trades and price changes and Section 5 contains the
empirical test of the model.

2 Model Overview

We work with the asymmetric information microstructure model of Easley and O’Hara (1992),
which is derived in turn from Glosten and Milgrom (1985). Our model differs in one substantive
way from previous research. Easley and O’Hara (1992) assume that when private news is absent
an uninformed trader arrives with probability one. In contrast, we assume that the arrival
probability of an uniformed trader is independent of private information.7 More simply, for
otherwise equal parameters, the probability of a no trade is higher if private information is
absent in our model than in Easley and O’Hara. We show below that the serial correlation
properties of trades and squared price changes depend in part on the difference between the
probability of trade when private information is present and the probability of trade when
private news is absent. Thus, this feature results in quantitatively more serial correlation in
trades and squared price changes versus Easley and O’Hara. Serial correlation occurs, however,
regardless of whether or not we use this assumption.
The information structure of the market is as follows. Informed traders learn the true

share value with positive probability before trading starts, while the specialist and uninformed
traders do not learn the true share value before trading starts. We define the interval of time
over which asymmetric information is present to be an information period. At the beginning of
each information period informed traders receive the signal Sm, where m indexes information

6Huffman (1987) generates trade using an overlapping generations framework. However, Huffman’s model
generates transitory negative serial correlation in both asset price and trading volume, which is inconsistent with
the features described above.

7The Easley and O’Hara assumption when private information is absent can be interpreted either as informed
traders arrive, but act as uninformed, or that informed traders are inactive, but enough uninformed traders are
present to replace the missing informed traders, so that arrival rate of traders is independent of whether or not
private information is present. In contrast, our assumption can be interpreted either as the informed arrive, but
do not trade, or as the informed are inactive and the fraction of traders who are active is therefore lower when
private informaiton is absent.
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periods. At the end of each information period the realization of the random dollar value per
share, Vm, becomes public information and the specialist and informed traders agree upon the
share value. We assume Vm takes one of two values vLm < vHm

with P (Vm = vLm) = δ. We
assume vLm and vHm

are bounded from below by vlb > 0 and above by vub <∞ for all m and
are public information at the end of information period m−1.We also assume 0 < δ < 1 so that
adverse selection is present in the market.
The signals received by informed traders at the start of an information period are inde-

pendent across information periods and identically distributed. Therefore, serial correlation in
trades and squared price changes generated by the model does not require serial correlation in
the underlying news process. The signal Sm takes the value sH if the informed receive the high
signal and learn Vm = vHm

, sL if the informed receive the low signal and learn Vm = vLm ,
and s0 if the informed receive the uninformative signal and hence, no private information. The
probability that the informed learn the true value of the stock through the signal is θ, so the
probability that Sm takes the value sL is δθ.
The signal completely determines the trading decisions of the informed. Conditional on

receiving the uninformative signal, informed agents do not trade by assumption. If informed
traders receive signal sL, then informed traders always sell as long as the specialist is uncertain
that the true value is vLm . If informed traders receive signal sH , then informed traders always
buy as long as the specialist is uncertain that the true value is vHm

.
All traders and the market specialist are risk neutral and rational. To induce uninformed

rational traders to trade, some disparity of preferences or endowments across traders must
exist. We let ωi be the rate of time discount for the ith trader. As in Glosten and Milgrom
each individual assigns random utility to shares of stock, s, and current consumption, c, as
ωsVm + c.

8 We set ω = 1 for the specialist and informed traders. Three types of uninformed
traders exist, those with ω = 1, who have identical preferences and do not trade, those with
ω = 0, who always sell the stock, and those with ω = ∞, who always buy the stock. Among
the population of uninformed traders, the proportion with ω = 1 is 1− ε, the proportion with
ω =∞ is (1− γ)ε, and the proportion with ω = 0 is γε. The value of ω completely determines
the trading decisions of the uninformed, which thus do not depend on the bid, ask, or any public
information they may have.
Traders arrive randomly to the market one at a time, so we index traders by their order of

arrival. The probability that an arriving trader is informed is α > 0. A trader arrives, observes
the bid and ask, and decides whether to buy, sell, or not trade. Let Ci be the random variable
that corresponds to the trade decision of trader i. Then Ci takes one of three values: cA if the
ith trader buys one share at the ask, Ai; cB if the ith trader sells one share at the bid, Bi; and
cN if the ith trader elects not to trade. The assumption that informed traders arrive randomly
and trade at most one share is perhaps strong given the information advantage, but can be
viewed as a simplification of a more complex model in which a pooling equilibrium exists where
informed traders (or perhaps a single informed trader) mimic the both the timing of arrival and
size of trades of the uninformed (see for example Laffont and Maskin, 1990 or Goodhart and
O’Hara, 1997 page 94).

8Because Vm is realized at the end of the information period, Vm is the random share value used to construct
a trader’s utility at the end of an information period.
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After the action of each trader, the specialist revises beliefs about the signal received by
informed traders, and thence about the true value of a share. Let Zi be the information set
of the specialist prior to the arrival of trader i + 1, which we term the public information set.
We let the information set of the uninformed be Zui ⊆ Zi. As noted above the actions of the
uninformed do not depend on Zui .
After the ith trader has come to the market, the specialist’s belief that informed traders

received a high signal is P (Sm = sH |Zi) = yi. Correspondingly, the specialist’s belief that
informed traders received a low signal is P (Sm = sL|Zi) = xi. By construction, the specialist’s
belief that informed traders received an uninformative signal is P (Sm = s0|Zi) = 1 − xi − yi.
The action of each trader, even the decision not to trade, conveys information about the signal
received by informed traders.
As trading occurs, information accrues to the specialist. In response, the specialist updates

the probabilities (xi, yi). The key parameters that govern the speed of learning are α and ε. If
trader i− 1 trades at the ask then Bayes Rule implies:

yi|Zi−1, cA = yi−1 α+ (1− α) ε (1− γ)

αyi−1 + (1− α) ε (1− γ)
.

If trader i− 1 trades at the bid

yi|Zi−1, cB = yi−1 (1− α) εγ

αxi−1 + (1− α) εγ
.

Finally, if trader i− 1 does not trade

yi|Zi−1, cN = yi−1 (1− α) (1− ε)

α (1− xi−1 − yi−1) + (1− α) (1− ε)
.

The learning formulae for xi are:

xi|Zi−1, cA = xi−1 (1− α) ε (1− γ)

αyi−1 + (1− α) ε (1− γ)
,

xi|Zi−1, cB = xi−1 α+ (1− α) εγ

αxi−1 + (1− α) εγ
,

xi|Zi−1, cN = xi−1 (1− α) (1− ε)

α (1− xi−1 − yi−1) + (1− α) (1− ε)
,

Note that in Easley and O’Hara (1992), xi|CN = xi−1 and yi|CA = yi−1 since only the unin-
formed do not trade and thus no trades convey no information. In contrast, here a no-trade
conveys information, since with probability α (1− xi−1 − yi−1) the no-trade was by an informed
trader (or alternatively with probability α (1− xi−1 − yi−1) no trader was present in the mar-
ket, which happens only when no private news is present).
The specialist sets a bid and ask, which are the prices at which he is willing to buy and sell,

respectively, one share of stock. The bid and ask are determined so that the specialist earns zero
expected profits from each trade. The zero expected profit condition is an equilibrium condition,
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which arises from the potential free entry of additional market specialists should the bid and
ask lead to positive expected profits for the specialist. The quoted prices set the specialist’s
expected loss from trade with an informed trader equal to the specialist’s expected gain from
trade with an uninformed trader:

Ai =
αyi−1vHm + (1− α) ε (1− γ)E (Vm|Zi−1)

αyi−1 + (1− α) ε (1− γ)
,

where E (Vm|Zi−1) = xi−1vLm + yi−1vHm + (1− xi−1 − yi−1)EVm. In parallel fashion

Bi =
αxi−1vLm + (1− α) εγE (Vm|Zi−1)

αxi−1 + (1− α) εγ
.

It is straightforward to show that learning is consistent, that is, the bid and ask converge
to the strong-form efficient value of a share, which reflects both public and private information.
Hence the bid-ask spread, which reflects the specialist’s uncertainty about private news, con-
verges to zero as private information is revealed through trade. Because transaction prices are
between the bid and ask, transaction prices also converge to the strong-form efficient value of a
share.

3 Transaction Price Changes

To understand the behavior of transaction price changes implied by the model, we first present a
simple expression for the price change associated with each possible trade decision. Following the
decision of trader i, the price of the stock is its expected value conditional on public information.
The resultant price change from the decision of trader i is

Ui = E (Vm|Zi)−E (Vm|Zi−1) .
For example, if trader i elects to buy the stock at the ask, then the transaction price is
E (Vm|Zi) = Ai. (The equality between the conditional expected value of the stock and
the ask is ensured by the equilibrium condition that governs quote setting, which implies
Ai = E (Vm|Zi−1, Ci = cA)). We refer to {Ui}i≥1 as the sequence of transaction price changes,
noting that a transaction occurs even if a trader elects not to trade.9

The information content of trade decisions, which depends on the history of trades and
the parameter values, drives transaction price changes. To provide insight, we present simple
expressions for each of the three possible values for Ui, one corresponding to each of the possible
trade decisions. If Ci = cA, then E (Vm|Zi) = Ai, and

Ui =
αyi−1

P (Ci = cA|Zi−1) [vHm −E (Vm|Zi−1)] .
9In empirical work, Ui is not observed if either trader i or trader i− 1 elects not to trade. Econometricians

therefore typically use the bid, ask, midpoint between the bid and ask, or last trade as a proxy for the unobserved
transaction prices. Alternatively, estimates of the microstructure parameters could be used to construct a proxy.
Our results on calendar period aggregates are virtually unchanged if a proxy replaces Ui on no trade decisions,
because all measures respond to information in a similar fashion.
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The price change that results from a trade at the ask is the price change that would result if
the specialist knew the trader was informed vHm − E (Vm|Zi−1), multiplied by the specialist’s
likelihood of such a trade with an informed trader αyi−1

P (Ci=cA|Zi−1) . If Ci = cB, then E (Vm|Zi) =
Bi and

Ui =
αxi−1

P (Ci = cB|Zi−1) [vLm − E (Vm|Zi−1)] .

Finally, if Ci = cN , then

E (Vm|Zi) = α (1− xi−1 − yi−1)EVm + (1− α) (1− ε)E (Vm|Zi−1)
α (1− xi−1 − yi−1) + (1− α) (1− ε)

and

Ui =
α (1− xi−1 − yi−1)
P (Ci = cN |Zi−1) [EVm −E (Vm|Zi−1)] .

Even the decision not to trade conveys information and results in a transaction price change
that is not zero.
In general, the expected value of the stock following a decision not to trade lies within the

bid-ask spread. As a result, decisions to trade at the bid or the ask generally convey more
information than do decisions not to trade. (For the first trade in an information period,
trades at the bid or ask must convey more information, because δy0 = (1− δ)x0 which implies
B1 < E (Vm|Z0, C1 = cN ) < A1). However, it is possible to have parameter values and a trade
history for which a decision not to trade conveys the most information. For example, if ε is
nearly one and α is nearly zero, then no trade decisions are rare and are most often made by
informed traders, which implies E (Vm|Zi−1, Ci = cN ) > Ai (if E (Vm|Zi−1) < EVm). For this
reason we introduce the effective bid-ask spread

eAi − eBi = max{Ai, E[Vm|Zi−1, Ci = cN ]}−min{Bi, E[Vm|Zi−1, Ci = cN ]},
which is the difference between the maximum price change and the minimum price change.
We are now able to establish the statistical properties of transaction price changes {Ui}i≥1.

Theorem 1: Transaction price changes satisfy:

1. E (Ui|Zi−1) = 0 and E (Ui|Sm 6= s0) 6= 0
2. E (UhUi|Zi−1) = 0 for h < i

3. c
³ eAi − eBi´2 ≤ E ¡U2i |Zi−1¢ ≤ ³ eAi − eBi´2 with c ≤ 1

4 .

4.
³ eAi − eBi´ as→ 0 at an exponential rate.

7Kelly and Steigerwald: Private Information and High-Frequency Stochastic Volatility

Published by The Berkeley Electronic Press, 2004



Proof: See Appendix.

The first two parts of Theorem 1 deliver the traditional results that, with respect to public
information, transaction price changes are mean zero and serially uncorrelated. Further, in-
formed traders who are active anticipate transaction price changes that move in a systematic
way in response to the flow of private information. Since transaction price changes have nonzero
conditional variance, Parts 3 and 4 of Theorem 1 together imply that the effective bid-ask spread
drives the variance in Ui and induces heteroskedasticity.

10 As the specialist becomes certain
of the true value of the share, the bid and ask converge to the true value of the share and
E
¡
U2i |Zi−1

¢→ 0 as i→∞.
The declining bid ask spread induces autocorrelated conditional heteroskedasticity and there-

fore serial correlation in squared transaction price changes. The difference in variance between
information periods with and without news also induces serial correlation in squared transac-
tion price changes, since transactions in which private information is present (and thus high
variance) are most often followed by transactions in which private information is still present.
In the next section, we derive the serial correlation properties of both transaction level and
calendar period data.

4 Serial Correlation Properties

To formally link the effects of individual trader decisions to the behavior of prices and trades
measured at calendar period intervals, we first define how arrivals (economic time) are aggre-
gated into calendar periods. Let each information period contain k > 0 calendar periods. For
example, if an information period lasts one day, as in Easley, Kiefer and O’Hara (1993), then for
data from the New York stock exchange (which is open for 6.5 hours) each information period
contains thirteen 30 minute calendar periods. A calendar period, which is indexed by t, contains
η trader arrivals, which as above are indexed by i. Transaction level properties are therefore
the special case η = 1and k = τ. In general, we show serial correlation exists at both the trans-
actions and calendar period data. A data sample, from which the serial correlation properties
of calendar period quantities are estimated, consists of a large number of information periods.
Because the information arrival process is independent over time, the k calendar measurements
corresponding to one information period are independent of the k calendar measurements corre-
sponding to any other information period. The sequence of calendar measurements is not itself
generated by a stationary process.

Transaction Level and Calendar Period Trades
Let the number of trades in period t be It. Because η traders arrive each period, It takes integer
values between 0 and η and so It is a binomial random variable. The parameters are η, the
number of possible arrivals, and the probability of trade at each arrival. The probability of a

10Hausman, Lo and MacKinlay (1992) find that the bid-ask spread is positively related to the variance of
transaction price changes.
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trade depends on the signal, so:

It| (Sm 6= s0) ∼ B (η,α+ ε (1− α)) ,

It| (Sm = s0) ∼ B (η, ε (1− α)) .

Unconditionally,

E [It] ≡ µ = θµ1 + (1− θ)µ0 (4.1)

V ar [It] ≡ ν2 = θν21 + (1− θ)ν20 + θ(1− θ) (µ1 − µ0)2 , (4.2)

where the subscripts 0 and 1 indicate conditioning on Sm = s0 and Sm 6= s0, respectively.
Given this structure for the number of trades in a calendar period, we derive the serial

correlation properties of {It}t≥1.

Theorem 2: If 0 < r < k and 0 < θ < 1, then It−r and It are positively serially correlated.
If r ≥ k, then It−r and It are uncorrelated. Further for all r > 0, the correlation between It−r
and It is given by:

Corr(It−r, It) =
θ(1− θ) (αη)

2

ν2

·
k −min(r, k)

k

¸
(4.3)

Proof: See Appendix.

Because of the nonstationary process generating trades, it may seem surprising that the
correlation in It is not expressed as a function of time. To understand why, note that when
connecting calendar period measurements to the data generating process, we do not know in
which past calendar period the process began. Consider an information period that corresponds
to one day for which news potentially arrives at the beginning of the day. As news could
just as likely have arrived at any calendar period in the day, we do not want our calendar
period implications to depend on an arbitrary assumption about news arrival. To avoid such
dependence, we consider t to be randomly sampled, so that It is equally likely to correspond to
any calendar period in the day. The serial correlation in It is then independent of time.
Many empirical studies focus on the correlation structure for one market at different fre-

quencies (e.g., comparing five minute intervals with hourly intervals). Because the data are
gathered from the same market on the same asset, the number of trader arrivals in an informa-
tion period, τ = kη, is constant even though both k and η depend on the sampling frequency.
To understand the effect changing the frequency of observation has on the correlation, we sub-
stitute the formulas for the mean and variance of a binomial random variable and η = τ

k into
(4.3) to express the correlation (for r < k) as

Corr(It−r, It) =
µ
k − r
k

¶
(τ/k)θ(1− θ)α2

ε (1− α) [1− ε (1− α)] + θα [(1− α) (1− 2ε) + α(τ/k) (1− θ)]
,

and take the derivative with respect to k. As we decrease the frequency of observation we
simultaneously decrease k and increase η, yielding two countervailing effects on the correlation.
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The decrease in k reduces the serial correlation while the increase in η increases the serial
correlation. Because the magnitude of the effect of a change in k on the correlation diminishes
as r increases, it is for long lags that we would most likely see the serial correlation in trades
decline as we move from five minute data to hourly data.
As the driving source of the serial correlation is the impact of trade by the informed, serial

correlation persists only as long as the information advantage lasts. Liquidity parameters such
as η, the proportion of informed traders α, and other parameters affect the magnitude of the
serial correlation. To understand how the parameters individually influence the serial correlation
in trades we calculate comparative static effects.

Corollary 3: For 0 < r < k and 0 < θ < 1 the correlation between It−r and It is decreasing
in r, increasing in k, increasing in η and increasing in α.

Proof: The results follow from differentiation.

The results in Corollary 3 imply certain patterns of serial correlation in trades across markets.
Increasing the proportion of informed traders magnifies the impact of informed traders and
increases the correlation.11 In similar fashion, an asset for which the public realization of the
news occurs rather slowly (a larger value of k), will be more impacted by the entry and exit of
informed traders leading to more pronounced correlation. For a market with greater liquidity
in the form of a larger value of η, the increased number of traders also magnifies the impact
of informed traders and increases the correlation. An interesting implication is that serial
correlation in trades exists in both liquid and illiquid markets, which provides a theoretical
ground for the empirical serial correlation in illiquid markets found by Lange (1998).
Next, consider the relationship between ε (the fraction of uninformed who trade) and the

serial correlation in trades. If ε is small (precisely, if ε < 1−2αθ
2(1−α)), then virtually all trades

are by informed traders and increasing ε dilutes the informed traders and reduces the serial
correlation in trades. If α is large (precisely if αθ ≥ 1

2), then increasing ε increases the variation
in trades across information periods and increases the serial correlation in trades. In similar
fashion, increasing the frequency of news θ increases the correlation if ε is large and θ is small
(precisely ε > 1

2 and θ < 1
2). Because good and bad news are symmetric with respect to the

decision of whether or not to trade, the serial correlation is unaffected by changes to γ or δ.

Transaction Level and Calendar Period Squared Price Changes
Let Pt be the price at the end of period t. The period-t price change is

∆Pt =

tηX
i=(t−1)η+1

Ui. (4.4)

Transaction price changes thus drive calendar price changes. Note that calendar price changes
are equivalent to transaction price changes for η = 1. From Section 3, we know that the

11Changes to each parameter affect both the covariance and the variance, so the relative effects determine the
sign of each derivative. For example, as α increases there is a greater increase in trading in response to news,
which increases the covariance. The variance may also increase, but because the informed trade identically at
least one of the conditional variances (ν0, ν1) that combine to form the variance must decrease, and the increase
in the covariance dominates.
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information content of a trade decision depends on the preceding sequence of trade decisions.
As a result, the conditional variance of each Ui depends on the path of trades and so analysis
of the mixture process (4.4) does not yield straightforward analytical results for the correlation

of (∆Pt)
2
.

To make analysis of the correlation of (∆Pt)
2 tractable, we introduce an approximation

to the mixture process. If period t is the first period following the arrival of news, then

E
h
(∆Pt)

2 |Sm 6= s0
i
= σ1. Because trade decisions that occur shortly after the potential arrival

of news contain more information than do later decisions, the expected squared price change for
later periods declines, σj > σj+1 for j = 1, . . . k− 1. If the informed are inactive, then the vari-
ance of calendar period price changes is driven by the random decisions of the uninformed and

E
h
(∆Pt)

2 |Sm = s0
i
= σ0. Thus, we assume the information advantage of the informed persists

until the information period ends, while for information periods without informed traders the
uncertainty is quickly resolved, σk > σ0. Because observation t is equally likely to correspond to
any of the calendar periods in an information period, the unconditional expectation of calendar
period squared price changes is

E
h
(∆Pt)

2
i
= θσ̄k + (1− θ)σ0,

where σ̄k =
1
k

Pk
j=1 σj .

Given this structure for the squared price change in a calendar period, we derive the serial

covariance of
n
(∆Pt)

2
o
t≥1
.

Theorem 4: For 0 < r < k, the covariance between (∆Pt−r)
2
and (∆Pt)

2
is

1

k
{θ (1− θ)

k−rX
j=1

(σj−σ0)(σj+r−σ0)+θ2
k−rX
j=1

(σ̄k−σj)(σ̄k−σj+r)+θ2
rX
j=1

(σ̄k−σj)(σ̄k−σk−r+j)}.

For r = 1, k − 1, if
σk > θσ̄k + (1− θ)σ0,

then
Cov

h
(∆Pt−r)

2 , (∆Pt)
2
i
≥ 0.

Proof: See Appendix.

As in the covariance of calendar period trades, the covariance of calendar period squared price
changes is zero if r ≥ k. To determine the sign of the covariance at the longest lag, r = k−1, we
compare the magnitude of the conditional covariances (which are positive and given by the first
term in brackets) with the magnitude of the covariances of the conditional means (which are
negative and given by the remaining two terms in brackets). The sufficient condition for positive
serial covariance (and thus GARCH and SV) ensures that expected squared price changes are
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above their unconditional mean if the informed are active and below their unconditional mean
if the informed are inactive. As a result, if (∆Pt)

2
is above the unconditional mean, then

(∆Pt−r)
2 also tends to be above the unconditional mean for r = k − 1, and so prices have

stochastic volatility.

Persistence Puzzle
If U2i is assumed to be homoskedastic, then the covariance of calendar period squared price
changes is driven exclusively by the covariance in calendar period trades, and the persistence in
the covariance in trades should be matched by the persistence in the covariance in squared price
changes. The heteroskedasticity in U2i that arises from the movements in the expected bid-ask
spread breaks this persistence link. The variance of Ui declines in response to the information
revealed through trade, causing the serial covariance in squared price changes to decline, but
not affecting the serial covariance in the number of trades. Hence stochastic volatility is less
persistent than is the serial correlation in trades.
We first obtain an analytic result for the simplified structure of Theorem 4. Because the

persistence of both the stochastic volatility and the serial correlation increases with k, the
relative persistence depends on k.

Proposition 5: Let σk > θσ̄k + (1− θ)σ0 and σj − σj+1 = φ for all j = 1 . . . k − 1. Then
for 0 < r < k,

2(k − 2)(k + 3) > 3θ(20− 11k + k2) (4.5)

implies the covariance, and hence the correlation, of calendar period squared price changes decays
more rapidly than the covariance of calendar period trades.

Proof: See Appendix.

If information persistence is moderate (precisely if k ≤ 32), then (4.5) is satisfied for all θ.
Alternatively, if the news is not too frequent (precisely θ ≤ 2

3), then (4.5) is satisfied for all k.
Part 4 of Theorem 1 implies the decline in the variance of Ui is exponential, hence Proposition
5, which assumes linear decline in calendar period squared price changes, likely understates the
difference in persistence between trades and squared price changes.

5 Empirical Results

To see how well the predictions of the microstructure model accord with the data, we turn to
analyses of transaction data for IBM from the New York Stock Exchange (NYSE). From the
NYSE Trades and Quotes (TAQ) database, we study IBM transactions on the NYSE for the
year 2000.12 We filter the trade data to remove trades that were recorded out of sequence,
canceled, executed with special conditions, or recorded with some other anomaly. Because of
certain institutional details, occasionally large trades are broken up into a sequence of smaller

12We use last trade to approximate prices in the empirical section. As noted in Footnote 8, neither quotes
nor the last trade perfectly measure the price used in the theory. However, quotes, last trade, and prices all
generate nearly identical serial correlation properties in the model.
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trades, all at the same price (see Hasbrouck (1988)). In order to avoid misidentifying these
sequences of same sided trades as bursts of informed trades, we aggregate all trades recorded
within five seconds of each other without an intervening price change or quote revision.
The data are further filtered to remove time stamps outside of the official trading hours of the

NYSE (9:30 AM to 4:00 PM). Finally, the first half-hour of each trading day is removed in order
to avoid modeling the market opening of the NYSE, which is characterized by heavy activity
following the morning call auction. As Harris (1987), Engle and Russell (1998), and many
other authors have noted, the first half-hour of trade exhibits substantially different properties
than the rest of the day.
We analyze hourly totals for each of the 252 trading days in the year. The (hourly) average

number of trades is 331 with an average squared price change of 0.91. As noted by previous
authors (e.g. Harris (1987)) exchange data exhibits periodic features, which we remove as these
features likely arise from sources of trade not captured by the model. In addition to day-of-the-
week effects, we must remove any diurnal pattern. The hourly data exhibit a U -shaped pattern,
with higher transaction activity and volatility at the start and end of the day. In addition,
the number of trades on the NYSE exhibits a significant decline during the lunch period. We
capture the U -shaped diurnal pattern for squared price changes with a quadratic function in
hours. To capture the lunch effect in the number of trades, we replace the quadratic function
for hours with a linear spline, the middle part of which captures the slow period of trade around
the lunch hour. The periodic features are estimated to be (parentheses enclose the t-statistics)

TPt = 429.2
(63.4)

+ 19.0
(3.6)

Mot + 11.3
(2.2)

Tut + 20.6
(4.1)

Wet + 12.3
(2.4)

Tht + 19.3
(2.0)

Hot

−56.2
(20.7)

Ht + 57.1
(12.4)

(Ht − 3) · Lt + 60.0
(8.8)

(Ht − 4) ·ALt,¡
∆P 2t

¢P
= 2.0

(7.4)
+ 0.2
(0.9)

Mot + 0.1
(0.5)

Tut + 0.1
(0.7)

Wet − 0.1
(0.3)

Tht + 0.1
(0.1)

Hot

− 0.9
(5.4)

Ht + 0.1
(5.5)

H2
t ,

where superscript P indicates predicted value, Mot, Tut, Wet, and Tht, are day-of-the-week
indicator variables, and Hot is an indicator variable that takes the value 1 if the succeeding
trading day is a holiday or if the market closes early (the days prior to July 4 and after Thanks-
giving end at noon). Next, Ht takes the integer value corresponding to the hour of the day
(1 for the first hour, 6 for the last hour) and Lt and ALt are indicator variables equal to 1
for all hours after 12 p.m. and 1 p.m., respectively. To see how the lunch effect is captured,
hourly trades decline by 56 each hour until 1 p.m., hourly trades from 1 to 3 p.m. are roughly
unchanged from the noon hour, and hourly trades rise by about 120 from the previous hour
during the last hour of trading. As is immediately apparent, the diurnal effects are more sub-
stantial for this data than the daily effects. In what follows we work with the adjusted seriesn
Tt − TPt + 429.2,

¡
∆P 2t

¢− ¡∆P 2t ¢Po.
Figure 1 contains the autocorrelation functions for adjusted hourly trades and squared price

changes.13 The trade correlation remains significant for more than three weeks (ninety trading

13Results are unchanged if squared returns are used in place of squared price changes.
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hours). The squared price change correlation, which appears to die away within one or two
days (although there are several significant correlations at longer lags), does not appear to be
proportional to the trade correlation. These results are certainly consistent with the literature
and the implications of the microstructure model.
Another common way to capture the correlation in squared price changes is to model the

volatility with a GARCHmodel. For hourly squared price changes, the estimates of the GARCH
model are (standard errors in parentheses):

∆Pt = 0.02
(0.02)

+
¡
HP
t

¢1/2
V Pt ,

HP
t = 0.05

(0.01)
+ 0.06
(0.01)

³¡
HP
t−1
¢1/2

V Pt−1
´2
+ 0.88
(0.02)

HP
t−1.

The significant coefficient on the ARCH term (the estimated coefficient of 0.88 in the equation
for the scale) indicates that stochastic volatility is a statistically significant feature of the hourly
data.
To obtain predicted serial correlation properties of the model, we must assign parameter

values to the model. The standard method in the literature is to use maximum likelihood (ML)
estimation to obtain model parameters from the probabilities of trade (for example Easley,
Kiefer, O’Hara, and Paperman (1996)). The ML estimator with discrete arrivals (first proposed
by Easley, Kiefer and O’Hara (1997) and analyzed in more detail by Owens and Steigerwald
(2003)) is constructed from the likelihood for a sample of n trade decisions

L (Φ|C1 = c1, . . . , Cn = cn) = Πni=1P (Ci = ci|Zi−1;Φ) ,

where Φ = (α, ε, γ, δ, θ)0.14 In practice, the large number of trades that occur for many stocks
(and certainly for IBM) render the sample likelihood flat in several dimensions of the parameter
space. As a consequence, it is easier to work with an approximation to the likelihood (developed
in Easley, Kiefer, O’Hara and Paperman (1996)) in which traders arrive continuously.15 In
accord with previous studies, we assume the probability that an uninformed trader trades at
the ask and the probability of good news equal 0.5, and the length of an information period
is one day so that k = 6. From the analysis in Owens and Steigerwald (who study how to
minimize the potential bias that arises if the number of arrivals is misspecified) we assume that
there are twice as many arrivals as expected trades, so that η = 662. Table 1 gives the ML
estimates of the remaining microstructure parameters. Note that the parameter θ is estimated
at the daily frequency and so has a larger standard error than do the parameters estimated at
the arrival frequency.
One possible criticism of using ML here is that the serial correlation depends critically on

parameters k and η, which are not estimated. Ideally, a method of moments estimator could
be constructed to estimate the length of an information period using the trade auto-covariance

14The ML estimation thus requires quote data. We use quotes only from the NYSE (Blume and Goldstein
(1997) find that the NYSE quote determines or matches the national best quote about 95 percent of the time).
We also filter the quote data to remove recording anomalies.
15With continuous arrivals, the construct of a no-trade decision is not needed and the resultant binomial trade

decision is approximated by a Poisson random variable.
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moments. However, construction of such an estimator involves a number of difficulties and is
thus beyond the scope of this paper. An alternative is to calibrate the parameters so that the
model matches certain trade moments of the data. Then η and k are set in a systematic way,
the fit of the model improves considerably, and we get some information as to the robustness
of the ML results. In particular, we set θ so that the mean number of trades in the model
match the mean number of trades in the data and ε to maximize the first order serial correlation
in trades (which is approximately equal to the first order serial correlation in the data). The
number of trader arrivals η is then set so that the variance of trades in the model matches the
variance of trades in the data given α = 0.05. In general, the model is consistent either with
a large number of trader arrivals and low probability of trade (α and ε) or the reverse. We
maintain δ = γ = 0.5. We examine both k = 6 (for comparison to ML), and k = 90, so that
the persistence in serial correlation in trades matches the data (note that increasing k does
not change the time required for private information to be incorporated into the share price
through informed trade, but instead increases the time between the arrival of private news and
the public announcement of private news).

Method k ε θ α η δ γ
ML estimate
(Std. Err.)

6
NA

0.45
(0.005)

0.55
(0.03)

0.08
(0.003)

662
NA

0.5
NA

0.5
NA

Calibration k = 6 6 0.17 0.48 0.05 2304 0.5 0.5
Calibration k = 90 90 0.17 0.48 0.01 2304 0.5 0.5

Table 1: Parameter Values.

Given the parameter values, the predicted trade moments may be computed according to
Theorem 2 (see the proof of Theorem 2). Table 2 compares a variety of trade moments predicted
by the model to the data.
The ML estimated model greatly underestimates the variance in trades, since η is small, and

predicts the serial correlation in trades lasts for only k = 6 hours, which is inconsistent with
the persistence of 90 hours observed in the data. The calibrated model, given an information
period of k = 6 hours, does a better job matching the mean, variance, and first and second
order serial correlation in trades. However, the calibrated model also predicts the correlation
in trades lasts for only 6 hours. Hence it may be the case that the time between the arrival
of private information and the public announcement of the private information, the length of

moment E It Var It Corr (It−1, It) Corr (It−2, It) Corr (It−50, It)
Sample Moment 429.20 3658.03 0.76 0.51 0.20
ML Estimated Model 303.33 946.54 0.61 0 0
Calibrated Model, k = 6 429.24 3661.98 0.75 0.60 0
Calibrated Model, k = 90 400.42 463.34 0.283 0.280 0.127

Table 2: Moments of the Market Microstructure Model and IBM Data.
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an information period, is longer than commonly assumed. While misspecifying the length of
an information period has no bias on estimates of uninformed behavior, it does bias estimates
of informed behavior. In particular, if information periods are assumed to be one day, when
in practice information periods last longer than one day, then ML overestimates the impact of
informed trade relative to uninformed trade. As depicted in Table 2, increasing k to 90 and
decreasing α to 0.01 matches the persistence in trades but underestimates the variance in trades
and overestimates the magnitude of the serial correlation at lower lags, since the model predicts
a linear decline when in fact the decline in the IBM data appears more geometric.
To approach the persistence puzzle for the general mixture model, we simulate the model

using the parameters from the calibration.16 Figure 2 depicts the serial correlation in hourly
trades and squared price changes for the simulation using the calibrated model (with k = 6).
The calendar period price change is calculated with the last price associated with a trade in
the calendar period. Because η is large, all information is resolved in one calendar period with
probability very close to one. Hence the expected first squared price change (σ1) is positive
while the next five squared calendar price changes are zero. Clearly then the model must
predict negative serial correlation for lags 1-5 and the positive serial correlation for lag 6 (it is
straightforward to calculate these moments analytically). Although the model does not match
the hourly squared price data very well, the model does predict quite a bit of positive serial
correlation at 5 minute and transaction level data. Thus the model predicts positive serial
correlation in squared price changes on the order of minutes and positive serial correlation in
trades for a few hours. Figure 3 shows the autocorrelation function for the simulation of the
calibrated model with k = 90. As noted above, the model captures the persistence in trades,
but predicts a linear decline. Squared price change correlations remain positive for about three
or four hours, which is close to the persistence of the data, although again the magnitude of
first order serial correlation is smaller.
Although the model qualitatively matches the three key features of the data either the

persistence or the magnitude is quantitatively less in the model than in the data. The persistence
in the data for trades is a few weeks and one or two days for squared price changes, whereas
in the calibrated model the persistence is one day and a few minutes respectively. Conversely,
if the model is calibrated to match the persistence, the serial correlation in trades and squared
price changes have about half the magnitude in the model as in the data.

6 Conclusions

The possible presence of private information in an asset market leads to transaction price changes
that, while uncorrelated, are dependent and heterogeneous. The heterogeneity is present in the
conditional variance, which moves in accord with the bid-ask spread. As trading reveals private
information, the conditional variance of transaction prices declines with the spread. As a result,
transaction price changes have stochastic volatility.
Serial correlation in calendar period quantities, for trades and squared price changes, as well

as the persistence puzzle can also be explained by the arrival of private information. Given that
informed traders are trading in the current period, informed traders will most likely trade in the

16The results of the ML estimated model are similar to the calibrated model with k = 6.
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following period, which generates serial correlation in trades. The serial correlation in trades is
positive and persistent. Serial correlation in trades generates serial correlation in squared price
changes. Given that the informed traders are trading, more variance exists in squared price
changes simply because more trades occur in a calendar period. More trades implies that the
price change is the sum of more random transaction price changes, which in turn implies that
price changes have greater variance. Because serial correlation exists in trades, serial correlation
exists in squared price changes. However, there is an additional effect on the serial correlation
in squared price changes, the decline in the bid-ask spread. All trades are at the bid or ask,
hence expected price changes are bounded by the bid-ask spread. The bid-ask spread declines
as learning proceeds, which reduces the variance and the persistence of the serial correlation in
squared price changes. Given more trades occur in a calendar period, most likely more trades
occur in the next calendar period, which implies higher variance in both periods. However, the
trades in the second calendar period are from a random variable with a smaller variance, due to
the smaller bid-ask spread. Hence the serial correlation is smaller and less persistent. We thus
replicate the observed empirical features of the data and explain the serial correlation through
the entry and exit of informed traders and the associated revelation of information in prices.
The correlation in calendar period quantities is not an artifact of aggregation; as transaction

price changes themselves have stochastic volatility. Further, the stochastic volatility in calendar
period data arises without correlated news; the news arrival process we consider is independent
over time. Instead, the endogenous news revelation process over the information period gener-
ates a persistent information advantage for the informed, leading to differences in the number
of trades on news versus no news periods. When information periods are aggregated together,
serial correlation results. Because we presume no serial correlation in the news arrival process,
obtaining serial correlation at lower frequencies requires a long information period. As a long
information period may not be plausible for all news arrivals, our results provide an explana-
tion for high-frequency serial correlation and indicate that other factors must play a role in
low-frequency serial correlation.
We calibrated the model to obtain parameters for the model and compare the serial corre-

lation in trades and squared price changes in the fitted model with that of high frequency IBM
data. We find that the fitted model qualitatively predicts all three features of interest, although
either the persistence or the magnitude is less than in the data. The assumed length of an in-
formation period plays an important role in the results, however. Therefore, a fruitful direction
of future research might be to estimate the length of an information period by exploiting the
autocovariance moments in trades perhaps with a method of moments estimator.
What information set should be used to form conditional expectations of (∆Pt)

2? The above
results indicate that prediction of the variance of price changes depends on prediction of the
entry and exit of informed traders. Specifically, the conditional variance of stock prices depends
on the previous number of trades, but does so in a nonlinear way. This finding underpins
recent models of stochastic volatility that are based on jump-diffusion processes. Many of these
models have a jump arrival rate that is constant through time. Our work suggests that future
models of stochastic volatility include a jump arrival rate that varies through time, in response
to innovations in the number of trades.
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7 Appendix

Proof of Theorem 1

For the proof of Theorem 1, let CN represent Ci = cN in the conditioning information set.
Part 1. The expected price change from trader i, conditional on the public information set

Zi−1 is

E (Ui|Zi−1) =
X

j=A,B,N

P (Ci = cj |Zi−1)Ui(Ci = cj),

which equals

αyi−1vHm
+ αxi−1vLm + α (1− xi−1 − yi−1)EVm − αE (Vm|Zi−1) = 0.

Because
P (Ci = cA|Sm 6= s0) 6= P (Ci = cA|Zi)

for any finite i, price changes are not mean zero with respect to the information set of the
informed.
Part 2. Let h and i be distinct values with h < i,

E (UhUi|Zi−1) = Uh · [E (Vm|Zi−1)− E (Vm|Zi−1)] = 0.

Part 3. Recall E
¡
U2i |Zi−1

¢
equals

P (Ci = cA)(Ai −E (Vm|Zi−1))2 + P (Ci = cB)(Bi −E (Vm|Zi−1))2
+P (Ci = cN )(E[Vm|Zi−1, CN ]−E (Vm|Zi−1))2.

The upper bound for the conditional variance is

E
¡
U2i |Zi−1

¢ ≤ P (Ci = cA)(Ãi −E (Vm|Zi−1))2 + P (Ci = cB)(B̃i −E (Vm|Zi−1))2
+P (Ci = cN )(E[Vm|Zi−1, CN ])−E (Vm|Zi−1))2

≤ [P (Ci = cA) + P (Ci = cN )] (Ãi −E (Vm|Zi−1))2
+[P (Ci = cB) + P (Ci = cN )] (B̃i −E (Vm|Zi−1))2

≤ (Ãi −E (Vm|Zi−1))2 + (B̃i −E (Vm|Zi−1))2

≤
h
(Ãi −E (Vm|Zi−1))− (B̃i −E (Vm|Zi−1))

i2
=

h eAi − eBii2 ,
where the first inequality follows from the definition of Ãi and B̃i and the fourth inequality
follows from Bi ≤ E[Vm|Zi−1] ≤ Ai. Note that the unconditional variance is immediately
obtained from Jensen’s inequality

EU2i ≤ E
³ eAi − eBi´2 ≤ ³E eAi −E eBi´2 .
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To obtain the lower bound for the conditional variance we consider three cases. For each
case we consider the set Ti, which has three elements: |Ai −E (Vm|Zi−1)|, |Bi −E (Vm|Zi−1)|
and |E[Vm|Zi−1, CN ])−E (Vm|Zi−1)|. Let Pj = P (Ci = cj). If minTi = |Ai −E (Vm|Zi−1)|,
then

E
¡
U2i |Zi−1

¢ ≥ (PA + PN ) (Ai −E (Vm|Zi−1))2 + PB(Bi −E (Vm|Zi−1))2

≥ PB (PA + PN )
³
Ãi − B̃i

´2
,

where the second inequality follows from Lemma 1.1, which is proven below. If minTi =
|Bi −E (Vm|Zi−1)|, then

E
¡
U2i |Zi−1

¢ ≥ PA(Ai −E (Vm|Zi−1))2 + (PB + PN ) (Bi −E (Vm|Zi−1))2

≥ PA (PB + PN )
³
Ãi − B̃i

´2
,

where the second inequality follows from Lemma 1.1. If minTi = |E[Vm|Zi−1, CN ])−E (Vm|Zi−1)|,
then

E
¡
U2i |Zi−1

¢ ≥ PA(Ai −E (Vm|Zi−1))2 + (PB + PN ) (E[Vm|Zi−1, CN ]−E (Vm|Zi−1))2

≥ PA (PB + PN )
³
Ãi − B̃i

´2
,

where the second inequality follows from Lemma 1.1.
The unconditional variance thus satisfies:

min {PA (PB + PN ) , PB (PA + PN )}E
³ eAi − eBi´2 ≤ E ¡U2i ¢ .

Hence c = min {PA (PB + PN ) , PB (PA + PN )}, which by direct analysis is maximized at PA =
PB =

1
2 .

Part 4. The proof follows logic in Easley and O’Hara (1992). Full details are contained in
Kelly and Steigerwald (2001).

Lemma 1.1:Let c ∈ [0, 1]. For any pair of real numbers a and b

c (1− c) (a+ b)2 ≤ ca2 + (1− c) b2.
Proof. The left side of the inequality is c (1− c) ¡a2 + b2 + 2ab¢, which when subtracted from
both sides converts the inequality to

0 ≤ c2a2 + (1− c)2 b2 − 2c (1− c) ab = [ca− (1− c) b]2 .

Proof of Theorem 2

The proof is a straightforward calculation of the correlation. By definition, the covariance is
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Cov(It−r, It) = E (It−rIt)−EIt−r ·EIt.
If r ≥ k, then the independence of the signal process implies that It−r is independent of It,

so E (It−rIt) = EIt−r ·EIt and the covariance is zero.
For all calendar periods on information period m

E [It|Sm 6= s0] = µ1 = η (α+ ε (1− α)) ,

E [It|Sm = s0] = µ0 = ηε (1− α) ,

V ar [It|Sm 6= s0] = ν21 = η [α+ ε (1− α)] (1− α) (1− ε) ,

V ar [It|Sm = s0] = ν20 = ηε (1− α) [1− ε (1− α)] .

If r < k and It−r and It are measured on the same information period the conditional expecta-
tion of (It−rIt) is

θµ21 + (1− θ)µ20,

which occurs with probability k−r
k . Second, if It−r and It are measured on consecutive informa-

tion periods then the covariance is zero since information events are independent across trading
days. Because the process for calendar period trades is stationary, EIt−r equals EIt. As noted
in the text

EIt = θµ1 + (1− θ)µ0,

so

Cov (It−r, It) =
k − r
k

θ (1− θ) (µ1 − µ0)2

=
k − r
k

θ (1− θ) (αη)
2
.

Combining the two possible cases for r relative to k yields

Cov(It−r, It) =
½

θ(1− θ) (αη)2
£
k−r
k

¤
r < k

0 r ≥ k (7.6)

Combining the covariance and variance of It given by (4.2) gives the desired correlation. Because
all terms are positive for r < k, the correlation is positive.

Proof of Theorem 4

We derive Cov
h
(∆Pt−r)

2 , (∆Pt)
2
i
for r = 1 and k = 3. Derivation of the covariance for general

r and k follows similar logic. Let N = j if t − 1 is the jth calendar period in an information
period. Then for j = 1, 2, 3:

E
h
(∆Pt−1)

2 |N = j
i
= θσj + (1− θ)σ0
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and

E
h
(∆Pt)

2 |N = j
i
=

 E
h
(∆Pt−1)

2 |N = j + 1
i
for j = 1, 2

E
h
(∆Pt−1)

2 |N = 1
i
for j = 3

.

Because N is equally likely to take each value,

E
h
(∆Pt)

2
i
= θσ̄3 + (1− θ)σ0.

The covariance equals the conditional covariance plus the covariance of the conditional means.
The conditional covariance is

1

3

3X
j=1

n
E
h
(∆Pt−1)

2
(∆Pt)

2 |N = j
i
−E

h
(∆Pt−1)

2 |N = j
i
E
h
(∆Pt)

2 |N = j
io
,

which from the formulae for the expected calendar period squared price change given the value
of N equals

1

3


£
θσ1σ2 + (1− θ)σ20

¤− (θσ1 + (1− θ)σ0) (θσ2 + (1− θ)σ0)+£
θσ2σ3 + (1− θ)σ20

¤− (θσ2 + (1− θ)σ0) (θσ3 + (1− θ)σ0)+
θ [θσ3σ1 + (1− θ)σ3σ0] + (1− θ)

£
θσ0σ1 + (1− θ)σ20

¤−
− (θσ3 + (1− θ)σ0) (θσ1 + (1− θ)σ0)

 .
This expression simplifies to

1

3
θ (1− θ) [(σ1 − σ0) (σ2 − σ0) + (σ2 − σ0) (σ3 − σ0)] . (7.7)

The covariance of the conditional means is

E
n³
E (∆Pt−1)

2 −E
h
(∆Pt−1)

2 |N
i´³

E (∆Pt)
2 −E

h
(∆Pt)

2 |N
i´o

,

which equals

3X
j=1

P (N = j)
n³
E (∆Pt−1)

2 −E
h
(∆Pt−1)

2 |N = j
i´³

E (∆Pt)
2 −E

h
(∆Pt)

2 |N = j
i´o

.

Note
E (∆Pt−1)

2 −E
h
(∆Pt−1)

2 |N = j
i
= θ (σ̄3 − σj) ,

and

E (∆Pt)
2 −E

h
(∆Pt)

2 |N = j
i
=

½
θ (σ̄3 − σj+1) for j = 1, 2
θ (σ̄3 − σ1) for j = 3

.

Thus, the covariance of the conditional means is

θ2

3
[(σ̄3 − σ1) (σ̄3 − σ2) + (σ̄3 − σ2) (σ̄3 − σ3) + (σ̄3 − σ1) (σ̄3 − σ3)] . (7.8)
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Combining (A4.2) with (A4.3) yields the formula.
Proof of second assertion: From the condition in the theorem, for all j,

σj > θσk + (1− θ)σ0,

or:

(1− θ)(σj − σ0) > θ(σk − σj)

Hence from the covariance formula:

cov(∆P 2t ,∆P
2
t−r) > θ

k−rX
j=1

(σk − σj+r)(σj − σ0) + θ
k−rX
j=1

(σk − σj+r)(σk − σj) +

θ
rX
j=1

(σk − σj)(σk − σk−r+j)

= θ(σk − σ0)
k−rX
j=1

(σk − σj+r) + θ
rX
j=1

(σk − σj)(σk − σk−r+j)

= θ(σk − σ0)

 kX
j=1

(σk − σj)−
rX
j=1

(σk − σj)

+ θ
rX
j=1

(σk − σj)(σk − σk−r+j)

= −θ(σk − σ0)
rX
j=1

(σk − σj) + θ
rX
j=1

(σk − σj)(σk − σk−r+j)

= θ
rX
j=1

(σj − σk)(σk−r+j − σ0),

which is clearly positive for r = 1. The covariance is positive for all k for r = k − 1, because:

θ
k−1X
j=1

(σj − σk)(σj+1 − σ0) = θ
iX

j=1

(σj − σk)(σj+1 − σ0) + θ
k−1X
j=i+1

(σj − σk)(σj+1 − σ0),

in which i is the largest integer for which σj > σk. Hence:

θ
iX

j=1

(σj − σk)(σj+1 − σ0) + θ
k−1X
j=i+1

(σj − σk)(σj+1 − σ0) >

θ
iX

j=1

(σj − σk)(σi+1 − σ0) + θ
k−1X
j=i+1

(σj − σk)(σi+1 − σ0)
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= θ(σi+1 − σ0)
k−1X
j=1

(σj − σk) = θ(σi+1 − σ0)(σk − σk) > 0.

Proof of Proposition 5

For calendar period trades, let ϕ = θ(1− θ)(αη)2, then:

Cov [It−1, It]− Cov [It−2, It]
Cov [It−1, It]

=
ϕk−1k − ϕk−2k

ϕk−1k
=

1

k − 1 ,

so the covariance in trades declines by a factor of 1
k−1 . Thus for the covariance in squared price

changes to decline faster, we must show:

Cov
h
(∆Pt−1)

2
, (∆Pt)

2
i
− Cov

h
(∆Pt−2)

2
, (∆Pt)

2
i

Cov
h
(∆Pt−1)

2 , (∆Pt)
2
i >

1

k − 1 . (7.9)

Because Condition 1 holds for period k, Proposition 5 implies the covariance is positive for
r = 1. Hence the Equation (7.9) holds if and only if:

(k − 2)Cov
h
(∆Pt−1)

2
, (∆Pt)

2
i
> (k − 1)Cov

h
(∆Pt−2)

2
, (∆Pt)

2
i
. (7.10)

Since σj = σj+1 + φ, we have:

σj = σk + (k − j)φ,

which in turn implies:

σk = σk + φ
kX
j=1

(k − j) = σk +
φ

2
(k − 1)

Substituting these facts and the formula for the covariance into (7.10) and performing some
tedious algebra, we see that (7.10) holds if and only if

2(k − 2)(k + 3) > 3θ(20− 11k + k2).

Or:
2(k − 2)(k + 3) > 3θ(k − 2.3)(k − 8.7).
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Figure 1: Serial Correlation Properties of 2000 IBM Data.
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Figure 2: Calibrated model, k = 6.
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Figure 3: Calibrated Model, k = 90.
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