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Abstract

To measure the effects of environmental policies, researchers often combine panel data with
two-way fixed effects models. This approach implicitly assumes that the distribution of the
policy effect is constant across units and over time. Yet many environmental policies have
effects that differ depending on the unit exposed to the policy and the period in which the
policy is applied. In this setting we detail why the model parameters generally do not capture
a useful measure of the effects. We then show that in a multi-period setting, if the policy is
applied in only one period, then the model parameters do capture a useful measure of the effects.
In these settings, appropriate inference is based on cluster-robust standard errors. Because the
resultant t-statistic may yield unreliable inference when clusters are heterogeneous, we present
an appropriate measure of cluster heterogeneity and describe how the measure should be used
to guide inference.

1 Introduction

In studying natural resources and the environment, the role of targeted programs and policies is
often of paramount interest. In the absence of random assignment, many studies employ panel
data and rely on two-way fixed effects to account for time-constant unobservable factors and
common nonlinear effects over time. Two principle questions confront the researcher using this
approach, namely how to interpret the parameters of the estimating equation in terms of the
effect of the program and how to assess the significance of the findings. In this paper we address
these questions in turn to provide a guide for estimation and inference in two-way fixed effects
models with panel data.

To fix ideas, consider measuring the effect of a gasoline content regulation (as in Auffhammer
and Kellogg 2011). The two-way fixed effects estimating equation is:

Yit = αi + δt + βDit + εit, t = 0, . . . , Ti, i = 1, . . . , G (1)

where Yit is a measure of air quality in state i at year t, αi is a state-level fixed effect, δt is
a year fixed effect and Dit is an indicator equal to one if state i in year t adopted a gasoline
content regulation. To estimate the parameters of this equation it is typical to assume that the
equation captures a feature of the conditional distribution of the outcome - most commonly the
conditional mean. For this to be the case, it must be that E(εit|αi, δt, Dit) = 0, which identifies
the coefficients in (1) as parameters of the conditional mean.
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When Equation (1) is seen as the true model generating the data, obtaining an unbiased and
consistent estimate for the effect of the program, β, is a straightforward exercise in ordinary
least squares algebra. But assuming Equation (1) is the correct specification implies imposing,
among other things, homogeneity of the program effect over time and across units. Yet many
environmental policies exhibit effects that are both heterogeneous and time-varying. In the
case of estimating the effect of a gasoline content regulation discussed above, Auffhammer and
Kellogg (2011) find that the flexibility allowed by regulators for refiners to choose which chemical
components to remove from their gasoline resulted in substantial variation in the effectiveness
of the policy.1 As another example, firms with differing marginal abatement costs can respond
differently to a pollution tax. Thus firm size, the energy intensity of the industry, and trade
patterns can lead to different responses to the tax (e.g. Martin et al. 2014). Other examples
include Auffhammer et al. (2009), Grainger (2012), Ferraro and Miranda (2013), Frondel and
Vance (2013), Bento et al. (2015), and Sills and Jones (2018). While the two-way fixed effects
estimator is one of the most popular tools in policy evaluation, most of the recent literature
analyzing it under treatment effect heterogeneity draws rather pessimistic conclusions.

We review these recent advances in the methodological literature, couched within the frame-
work in which the policy application is a treatment. A key component is to carefully describe
the estimand of interest, which depends on the degree of heterogeneity in the distribution of
treatment effects. We derive a representation of the parameter of Equation (1) that shows that,
in general, it does not correspond to an estimand of interest, such as an average treatment effect.
We detail why this is so and then describe the setting in which the model parameters do capture
a useful measure of the treatment effects - namely, a multi-period setting in which the subset
of units that receive treatment all do so in the same period. A special case of this is the classic
difference-in-differences model of two periods, where all units are untreated in the first period
and a subset of units are treated in the second period. In this setting a standard parallel trends
assumption is sufficient for the parameters of (1) to provide useful information.

For the settings in which estimation of (1) provides an estimate of an average treatment
effect, correct inference is based on a cluster-robust variance estimator. It is commonly believed
that the resultant cluster-robust t statistic has a normal distribution if the number of clusters
is large. This statement rests on an implicit assumption that the characteristics of the clusters
are similar. If they are not, then even if the number of clusters is large, the t statistic can be
non-normal. We show how to measure the dissimilarity across clusters to determine if the test
statistic is approximately normal. If the dissimilarity is large, so that the normal approximation
is poor, we show how to obtain critical values that provide a better approximation to the
distribution of the t statistic.

In Section 2 we use a potential outcomes framework to carefully describe the possible as-
sumptions about the heteogeneity in the distribution of treatment effects and the conditions
needed to identify the resulting estimand of interest. In Section 3 we present a representation of
β, and of the two-way fixed effects estimator, as a linear combination of the underlying average
treatment effects. The linear combination, in general, does not correspond to an estimand of
interest. Our results add to the existing literature in two ways. First, our result goes beyond
previous results that focus only on properties of the estimator and make clear that the issue of
weights is not only a property of the estimator but is intrinsic to the parameters of two-way
fixed effects specifications. Second, we provide a convenient expression for the weights, to aid in
understanding applied results. Section 4 presents the issues for inference that stem from cluster
heterogeneity and describes a correct procedure for inference. Section 5 provides an empirical
illustration of these findings and Section 6 provides a summary with practical recommendations.

1. These authors have data that allow them to also construct regression discontinuity estimators, which can provide
a useful alternative to two-way fixed effects estimators.
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2 Specifying and Identifying Treatment Effects

2.1 Potential Outcomes and Estimands

Causal effects are naturally associated with potential outcomes (see Imbens and Rubin 2015,
for a general treatment). To adapt potential outcomes to a multiperiod setting we must clearly
define how the treatment is assigned over time and distinguish among the potential measures of
causal effects.

To frame the discussion let the units under study be states, as in the motivating example
of state regulation of gasoline content. The data come from a balanced panel, where for each
state i in each time period t = 0, 1, . . . , T , there exist two potential outcomes: the outcome that
would hold if the state was subject to the regulation (treated), Yit(1), and the outcome that
would hold if the state was not subject to the regulation (untreated), Yit(0). We assume that
the potential outcomes for state i do not depend on the treatment status of any other state,
that is, there are no treatment spillovers (see Deschenes and Meng 2018; Vazquez-Bare 2017,
for recent work that allows for spillovers). Importantly, the potential outcomes, which could be
measures of air quality or health, for example, are themselves random variables.

The observed outcomes for each state depend on the assignment of a treatment vector
{Dit}Tt=0, where each element is a binary treatment indicator. We assume that no state is
treated in period 0, so that Di0 = 0 for all units. Once state i has been assigned to treatment it
remains in treatment, so that Dit ≥ Dit−1. In general, all units do not need to enter treatment
in the same period (see Currie et al. 2015, for an example), which is often called a staggered
adoption design. To capture this type of design, let the period in which the state is assigned to
treatment, denoted t∗i , be random. For states that are never assigned to treatment, t∗i = T + 1.
In detail,

t∗i =

{
min{t : Dit = 1} if

∑T
t=0Dit > 0

T + 1 if
∑T
t=0Dit = 0

.

Because units never leave treatment, t∗i alone conveys the same information as the entire vector
of treatment indicators {Dit}Tt=0, and the treatment indicator can be written as Dit = 1(t ≥ t∗i ).

The observed outcome, Yit, is related to the potential outcomes in the following way:

Yit =


Yi0(0) if t = 0

Yit(0) if t 6= 0 and Dit = 0

Yit(1) if t 6= 0 and Dit = 1

,

which can be rewritten more compactly as:

Yit = Yit(0) + τitDit, (2)

where τit = Yit(1)−Yit(0) is the treatment, or causal, effect for state i in period t. The treatment
effect potentially differs over states and time periods, so this expression captures all possible
heterogeneous treatment effects. Because the potential outcomes pair consists of the observed
outcome and the counterfactual, unobserved outcome, the treatment effect is not observable.

In this context, it is possible to define several parameters of interest. The average treatment
effect (ATE) in period t is the mean of the distribution of treatment effects in that period:

ATEt = E[τit].

Identification of the ATE requires strong assumptions that rarely hold when treatment receipt
is endogenous. For this reason, attention usually turns to the average treatment effect on the
treated (ATT) in period t, which is the average effect for treated states in period t:

ATTt = E[τit|Dit = 1].

To understand the complex dynamics of these parameters, consider the second period, t = 2, in
detail:

ATT2 = w1E[τi2 | t∗i = 1] + w2E[τi2 | t∗i = 2], (3)
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which is a weighted average of two components with weights w1 = P[t∗i = 1|Di2 = 1] and
w2 = P[t∗i = 2|Di2 = 1]. The first component is the average treatment effect in the second year
of regulation for states that adopted the policy in period 1. The second component captures
the effect for states that newly adopted the regulation in period 2. From this we can see that
t∗i partitions the population into disjoint groups according to when (and whether) they start re-
ceiving treatment. Because groups entering treatment in different periods can be heterogeneous
and exhibit different average effects over time, this variable will play a key role in modeling
treatment effect heterogeneity.

To isolate the components, and so aid in the identification of dynamic treatment effects and
the analysis of two-way fixed effects estimators, we index the ATT parameters by the period in
which a group enters treatment (Callaway and Sant’Anna 2019; Abraham and Sun 2020, also
analyze this parameter). The resultant group-specific ATT is defined for each group entering
treatment at time s ≤ t as:

ATT st = E[τit|t∗i = s].

The parameter ATT2 in (3) can then be expressed as:

ATT2 = w1ATT
1
2 + w2ATT

2
2 .

We consider the set of group-specific treatment effects {{ATT st }Tt=s : s = 1, . . . , T} as the
underlying parameters of interest. This is appropriate in the many contexts in which it is
reasonable to assume that the treatment effects for all units that enter treatment at the same
time are drawn from a common distribution, so that the ATT parameter is not indexed by i (see
de Chaisemartin and D’Haultfœuille, forthcoming, for an alternative setup with non-identically
distributed units). Our approach of allowing the ATT parameter to vary over both groups and
time allows for a rich degree of heterogeneity. For example, this setting accommodates treatment
effects that depend on how long the policy has been applied, in which case the treatment effects
two years after the policy is implemented have a different mean than the treatment effects in
the first year after the policy is implemented. The setting also allows for the treatment effects
in the first year of adoption to differ with the period of adoption, as would be the case if states
that are early adopters have a different distribution of effects than states that are later adopters.

2.2 Identification

We now focus on describing conditions for identification of group-specific average effects. While
identification under a parallel trends assumption is well understood, we formally state a result
to be clear about the assumptions needed to identify group-specific treatment effects.

Proposition 1 (Identification of group-specific effects) Consider a pair of periods t and
t′ with 0 ≤ t < t′ ≤ T . Consider the set of units with t∗i = s where t < s ≤ t′, who are untreated
in period t and treated in period t′, and the set of units with t∗i = u where u > t′, who remain
untreated in both periods t and t′. If

E[Yit′(0)− Yit(0)|t∗i = s] = E[Yit′(0)− Yit(0)|t∗i = u],

then ATT st′ is identified as

E[τit′ |t∗i = s] = E[Yit′ − Yit|t∗i = s]− E[Yit′ − Yit|t∗i = u].

We provide a proof of this result in the appendix.
Proposition 1 shows that the group-specific ATT in period t′ for units with t∗i = s can

be expressed as a function of the observable data. More precisely, it shows that the average
treatment effect in period t′ for the group of units entering treatment at some previous (or the
same) period s can be identified by comparing the evolution of their average outcome to the
evolution of another group that remains untreated in both periods t and t′. The key assumption
for this comparison to recover a causal parameter is the equality of the average trends of the
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Figure 1: Difference-in-differences
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potential outcomes under no treatment between periods t and t′, an assumption commonly
known as the parallel trends assumption.

Figure 1 illustrates the parallel trends assumption. Graphically, the assumption holds when
the observed average trend of the untreated group (the solid gray line) is parallel to the trend
that would have been observed for the treated group, had the policy not been implemented
(dashed black line).

2.3 Assessment of Identification

Identification assumptions are untestable by definition. The parallel trends assumption depends
on counterfactual magnitudes that can never be observed. Hence the validity of this approach
depends on the application: is the parallel trends assumption reasonable for the empirical ques-
tion at hand?

While this question cannot be answered directly, related evidence is often marshalled to
support identification. When multiple pre-treatment periods are available, researchers routinely
assess the credibility of this assumption by checking whether trends were parallel before the
treatment was implemented. Suppose that we have three periods, t = 0, 1, 2, where the policy
is implemented in the last period t = 2 so that both t = 0 and t = 1 are pre-treatment periods,
and a subgroup of units receives treatment in t = 2. Furthermore, suppose that both periods
t = 0 and t = 1 are valid baselines, in the sense that the parallel trends assumption holds for
both pairs:

E[Yi2(0)− Yi1(0)|Di2 = 1] = E[Yi2(0)− Yi1(0)|Di2 = 0]

E[Yi2(0)− Yi0(0)|Di2 = 1] = E[Yi2(0)− Yi0(0)|Di2 = 0].

The above immediately implies that the parallel trends assumption also holds between periods
t = 0 and t = 1:

E[Yi1(0)− Yi0(0)|Di2 = 1] = E[Yi1(0)− Yi0(0)|Di2 = 0].

But since both t = 0 and t = 1 are pre-treatment periods, all units are untreated and hence the
potential outcomes under no treatment are observable, Yi0(0) = Yi0 and Yi1(0) = Yi1. Therefore,
the above equation reduces to:

E[Yi1 − Yi0|Di2 = 1] = E[Yi1 − Yi0|Di2 = 0] (4)
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and because all the magnitudes involved are observable, this condition can be tested in practice
by simply comparing the observed outcome trends between the groups that will be treated and
untreated in the last period.

Because the identification assumption is fundamentally untestable, the condition in (4) is
neither necessary nor sufficient for the parallel-trends assumption in Proposition 1. The average
trends between groups could be parallel between periods 0 and 1 and then diverge between
periods 1 and 2, or vice versa. Nevertheless, condition (4) can provide some compelling evidence
to support it. We discuss these issues in more detail in Section 6.

3 Two-Way Fixed Effects Estimation

Proposition 1 establishes identification of group-specific average effects under a parallel trends
assumption without imposing parametric restrictions and without reference to any specific es-
timation strategy. In practice, these group-specific average parameters can be estimated non-
parametrically by simply replacing:

E[Yit′ − Yit|t∗i = s]− E[Yit′ − Yit|t∗i = u]

by its sample counterpart based on observations drawn from the population of interest. It is
important to note that the total number of parameters of interest can be large: one average effect
for each group t∗i = s in each treated period t ≥ s. This nonparametric estimation approach, to
our knowledge, is not used in empirical research. Instead, researchers routinely rely on two-way
fixed effects specifications as in Equation (1). The resultant two-way fixed effects estimator of
β, based on pooling all observations, is the reported measure of the treatment effect. A natural
question is therefore: how does this estimation method combine the heterogeneous treatment
effects {ATT st } and does this summary measure have a clear causal interpretation?

To develop the links between the two-way fixed effects specification in (1) and the heteroge-
neous treatment effects, expand the decomposition of the observed outcomes (2) as

Yit = Yi0(0) +

t∑
j=1

∆ij(0) + τitDit,

where ∆ij(0) = Yi,j(0)−Yi,j−1(0). This expression divides the observed outcome into a compo-
nent that is time-invariant, Yi0(0), a term that changes over time but not with the treatment,∑t
j=1 ∆ij(0), and a treatment indicator with its corresponding (random) coefficient τit. Impor-

tantly, this expression allows for arbitrary heterogeneity of the coefficients across units and over
time unlike the two-way fixed effects specification. Hence, this expression is similar to Equation
(1), with the important difference that coefficients are random and can vary across units and
over time.

To formally characterize the two-way fixed effects estimator rewrite (1) in deviations-from-
mean form. We have

Ÿit = βD̈it + ε̈it, (5)

where the double-demeaned variables are

Ÿit = Yit − Y i − Y t + Y , D̈it = Dit −Di −Dt +D, ε̈it = εit − εi − εt + ε,

and where

Y i =
1

T + 1

T∑
t=0

Yit, Y t =
1

G

G∑
i=1

Yit, Y =
1

G(T + 1)

T∑
t=0

G∑
i=1

Yit,

with analogous definitions for the treatment variable and the error. The OLS estimator for β
in (5) is the two-way fixed effects estimator:

β̂FE =

∑
t

∑
i YitD̈it∑

t

∑
iDitD̈it

.
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3.1 Staggered Adoption

We establish two properties under staggered adoption. First, we show that β, the treatment
effect coefficient in the two-way fixed effects specification, is a linear combination of the under-
lying treatment effects given by {ATT st }. While the weights in this linear combination sum to
one, it is not necessarily a weighted-average because some of the weights may be negative. Even
if all of the weights are non-negative, the resultant expression for β is not an intuitive weighted
average of the underlying treatment effects and its causal interpretation is unclear. Second,
we show that β̂FE is both consistent and conditionally unbiased for β. Related results for β̂FE
have been shown in a variety of contexts (Laporte and Windmeijer 2005; Borusyak and Jaravel
2017; Athey and Imbens 2018; de Chaisemartin and D’Haultfœuille, forthcoming; Goodman-
Bacon 2018; Imai and Kim, Forthcoming).2 Our results add to this literature by providing
an alternative characterization of the weights that clearly shows the relationship between these
weights and the treatment assignment (determined by t∗i ). According to this representation, the
researcher can easily evaluate or estimate the weights solely based on the (observable) vector
{t∗i }Gi=1.

In establishing the result, it will be helpful to define D∗i = 1(t∗i ≤ T ), so that units with
D∗i = 1 are eventually treated and those with D∗i = 0 are untreated in all the observed periods
t = 0, . . . , T .

Assumption 1 The following conditions hold:

1. Sampling: the (T + 1)-dimensional vectors (Yit(0), Yit(1), t∗i , Dit)
T
t=0 are iid across i.

2. Treatment assignment: each unit i enters treatment in period t∗i > 0 and there is a
subset of untreated units for which t∗i = T + 1.

3. Parallel trends: for each t = 0, . . . , T , E[Yit(0)− Yit−1(0)|t∗i ] = E[Yit(0)− Yit−1(0)].

4. Regularity conditions: all the required moments are bounded.

Assumption 1.1 states that units are drawn independently from the same distribution, but
allows for an arbitrary correlation structure within units over time (the correlation structure
is further discussed in Section 4). Assumption 1.2 allows units to enter treatment in different
periods as defined by t∗i , subject to the existence of a pre-treatment period t = 0 in which no
unit is treated, and the existence of a group that remains untreated in every period t = 0, . . . , T .
Assumption 1.3 is the parallel trends assumption, according to which the average trajectory of
the potential outcomes under no treatment is the same regardless of when or whether units
receive treatment. Finally, Assumption 1.4 imposes standard regularity assumptions to obtain
probability limits.

To obtain a representation of β, let E[D∗i ] be the proportion of eventually treated units in
the population and let E[t∗i |D∗i = 1] be the average entry period for these units. Also, for each
period t let E[Dit] = πt be the population proportion of units that are treated in period t.

Proposition 2 (Representation of β) Under Assumption 1 the coefficient β from the two-
way fixed effects specification (1) can be written as:

β =

T∑
t=1

t∑
s=1

E[τit|t∗i = s]ωst

where

ωst =

(
E[D∗i ]− πt + 1

T+1 (s− E[t∗i |D∗i = 1]E[D∗i ])
)
P[t∗i = s]∑T

t=1

∑t
s=1

(
E[D∗i ]− πt + 1

T+1 (s− E[t∗i |D∗i = 1]E[D∗i ])
)
P[t∗i = s]

.

2. Related results for one-way fixed effects include Wooldridge (2005), Chernozhukov et al. (2013), Gibbons et
al. (2018), and S loczyński (2018).

7



We provide a proof of this result in the appendix.
To illustrate the fact that β is not necessarily a useful measure of treatment effects, consider

the case with three time periods t = 0, 1, 2 and three groups. Group 1 enters treatment in the
first period (t∗i = 1), group 2 enters treatment in the second period (t∗i = 2), and the remaining
group is untreated. Suppose that 50 percent of the population is in group 1 and the remaining
population is split evenly between the untreated group and group 2. The average treatment
effects given by the proportionally-weighed average of the group-specific effects are

ATT1 = ATT 1
1 and ATT2 =

2

3
ATT 2

1 +
1

3
ATT 2

2 .

If each period is equally weighted, then

ATT =
1

2
ATT1 +

1

2
ATT2 =

1

2
ATT 1

1 +
1

3
ATT 2

1 +
1

6
ATT 2

2 . (6)

Computation of ωst reveals3

β =
3

5
ATT 1

1 + 0ATT 2
1 +

2

5
ATT 2

2 ,

which does not correspond to the ATT in (6). Moreover, β will not equal ATT = λATT1 + (1−
λ)ATT2 for any value of λ ∈ [0, 1].

One of the most perplexing aspects of Proposition 2 is the possibility that some weights in the
linear combination are negative, a point that has been emphasized in the recent literature. How
does this come about? Mechanically, negative weights require s < E[t∗i |D∗i = 1]E[D∗i ], which is
more likely in later periods (so that E[D∗i ]−πt is close to zero) for units who entered treatment
in earlier periods (so that s is small). In the three period case, if 25 percent of the population
is untreated, then when the proportion in group 1 falls below 50 percent of the population,
ω12 < 0. We display this in Figure 2, where the horizontal axis measures the proportion of the
population in group 1. While ω11 and ω22 are always between 0 and 1, ω12 turns negative when
the proportion in group 1 falls below 0.5.

Negative weights are likely to be particularly problematic when the effect of the treatment
is lagged or accumulates over time. As an extreme case, suppose that the average effect of the
treatment is 0 for all groups in the first period in which they are treated, so that E[τi1|t∗i =
1] = E[τi2|t∗i = 2] = 0, and equals some positive value θ > 0 in the second year of treatment,
E[τi2|t∗i = 1] = θ (which is only observed for group 1). In this case, β = ω12θ, so if ω12 < 0 then
β < 0 even when the average effect is non-negative for all units in all periods.

To derive the related properties for the estimator of β, let Di = (Di1, . . . , DiT ) and D =
(D1,D2, . . . ,DG).

Proposition 3 (Properties of β̂FE) Under Assumption 1

E[β̂FE|D] =

T∑
t=1

t∑
s=1

E[τit|t∗i = s] ω̂st

with

ω̂st =

(
D
∗ −Dt + 1

T+1

(
s− t∗D∗

))
p̂s∑T

t=1

∑t
s=1

(
D
∗ −Dt + 1

T+1

(
s− t∗D∗

))
p̂s

where D
∗

= 1
G

∑
iD
∗
i is the sample proportion of eventually treated units, Dt = 1

G

∑
iDit is

the sample proportion of treated units at time t, t
∗

=
∑
i t
∗
iD
∗
i /
∑
iD
∗
i is the sample average

entry period for treated units and p̂s = 1
G

∑
i 1(t∗i = s) is the sample proportion of units entering

treatment at time s.
Further, as G→∞ with T fixed,

β̂FE →P β.

3. Here E(D∗i ) = 3/4, E(t∗i | D∗i = 1) = 4/3, π1 = 1/2, π2 = 3/4, P(t∗i = 1) = 1/2, and P(t∗i = 2) = 1/4.
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Figure 2: Weights assigned by β̂FE
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We provide a proof of this result in the appendix.
Proposition 3 establishes that the expected value of the two-way fixed effects estimator

is a linear combination of the underlying treatment effects where the weights are the sample
counterparts of the weights in the representation for β. Unsurprisingly, as the number of units
grows holding T fixed, β̂FE is consistent for β.

Mirroring the target parameter β, the two-way fixed effects estimator will not necessarily
provide a useful measure of treatment effects, due to the weights in the linear combination.
An alternative description of how negative weights arise is provided by Goodman-Bacon (2018)

and Imai and Kim (2019) who show that β̂FE can be expressed as a linear combination of all
possible individual difference-in-differences estimators. Each difference-in-differences estimator
compares two groups over two time periods, such as the comparison

E[Yi1 − Yi0|t∗i = 1]− E[Yi1 − Yi0|D∗i = 0],

between post-treatment period t = 1 and the pre-treatment period t = 0 comparing the t∗i = 1
group to the untreated group. Not all of the comparisons use only the untreated units to form
the control group, and it is the use of a “pseudo-control” group that leads to negative weights.
The pseudo-control group arises because the two-way fixed effects estimator implicitly compares
units whose treatment status changes between periods to units whose treatment status remains
unchanged between periods. Thus in period 2, the units that entered treatment in period 1 now
form a pseudo-control group with a treatment effect that enters negatively in the two-way fixed
effects estimator.

In all, under staggered adoption the parameter β and its corresponding two-way fixed effects
estimator do not generally recover a meaningful measure of the effects of a policy. There is one
case, however, in which they do. If the treatment effects {τit} are iid over both i and t, then
the two-way fixed effects specification in (1) is correct and β is the average treatment effect on
the treated.
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Corollary 1 (Constant average treatment effects) Suppose that, in addition to Assump-
tion 1, there exists some τ such that E[τit|t∗i = s] = τ for all 1 < s ≤ T and s ≤ t ≤ T .
Then

β = τ,

E[β̂FE|D] = β,

and as G→∞ with T fixed,
β̂FE →P β.

We provide a proof of this result in the appendix.
This result shows that under constant average treatment effects, β̂FE is an unbiased and

consistent estimator of the causal treatment effect. Note, this result does not require constant
treatment effects, an unreasonably strong assumption that requires τit = τ . Rather, the require-
ment is that the distribution, or at least the expectation, of τit not vary across individuals and
over time.

3.2 Simultaneous Adoption

The discussion so far suggests that the two-way fixed effects specification does not recover a
causally interpretable estimand for average treatment effects. A key reason for this is the fact
that previously treated groups (whose status remains unchanged) are classifed as untreated
groups in later periods. Hence, we may suspect that under simultaneous adoption of the treat-
ment, that is, when all treated units receive treatment in the same period, the problems with
two-way fixed effects estimation disappear. The following corollary shows that this is indeed
the case.

Corollary 2 (Simultaneous adoption) Suppose that, in addition to Assumption 1, all treated
units enter treatment in the same period 0 < t∗ ≤ T , that is, t∗i = t∗ for all i such that D∗i = 1.
Then,

β =
1

T + 1− t∗
T∑
t=t∗

E[τit|D∗i = 1],

E[β̂FE|D] = β,

and as G→∞ with T fixed,
β̂FE →P β.

We provide a proof of this result in the appendix.
According to this result, when all treated units enter treatment at the same time, the two-

way fixed effects estimator is unbiased and consistent for a target parameter (β) that is a simple
average of the average treatment effects over the post-treatment periods. Notice that the sum
runs over the periods t∗ ≤ t ≤ T , a total of T +1−t∗ periods, giving equal weights 1/(T +1−t∗)
to each period. Hence, with simultaneous adoption, two-way fixed effects estimation recovers
an easily interpretable summary of the effect of a policy. Also note that the parameter β is
implicitly a function of T, the period being modeled. An implication is that, by extending a
data set a researcher explicitly changes T, which not only alters the estimator but also the
underlying estimand.

3.3 Implications for Empirical Practice

As noted at the beginning of Section 3, under the parallel-trends assumption it is possible to
estimate the group-specific treatment effects in each post-treatment period, which can give a
more complete assessment of the treatment effect heterogeneity both across groups and over
time. This is proposed by Callaway and Sant’Anna (2019), who also provide inference methods
for both the group-specific effects and summary measures of these effects. Under a more general
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heterogeneity assumption with non-iid units, de Chaisemartin and D’Haultfœuille (forthcoming)
propose an alternative estimand that focuses on the average effect for each group on the period
in which they switch from untreated to treated.

With many groups and time periods, the total number of parameters can be quite large,
and hence the researcher may be interested in summarizing these effects in some way. With
staggered adoption, it is always possible to apply Corollary 2 by doing pairwise comparisons
between each treated group and the untreated group. More precisely, one can estimate Equation
(1) on the subset of observations with t∗i = s and the untreated group to obtain one estimator

β̂sFE for each value of s, which gives an unbiased and consistent estimator of the average effect

for group s. The set of coefficients {β̂sFE}s can help analyze the heterogeneity in average effects
across groups, or can be used to construct a summary measure:

β̂λ =
∑
s

λsβ̂
s
FE

where {λ}s is a set of weights chosen by the researcher (such as, e.g., the sample proportion of
each group).

A key takeaway from this discussion is that the weighting problems pointed out in Proposition
3 are due exclusively to the choice of the 2WFE specification (1) and its corresponding estimator

β̂FE, and are unrelated to identification. In other words, even when β and β̂FE are unable to
recover an accurate measure of the average treatment effects, these effects are identified as long
as the parallel trends assumption holds. Thus, as serious as these problems can be, they can be
easily avoided by considering more flexible estimators that do not pool all observations together.

3.4 Dynamic specifications

A common specification when estimating treatment effects with panel data is a dynamic speci-
fication of the form:

Yit = αi + δt +

L∑
l=1

γlDit+l +

K∑
k=0

βkDit−k + εit (7)

This specification has two sets of parameters of interest. First, βk, corresponding to the current
treatment indicator and its lags, aim at estimating the effects of the treatment over time, that
is, how the treatment effect changes in each time period once a unit gets treated. Second, γl,
corresponding to leads of the treatment variables, are usually interpreted as “placebo tests” that
measure whether the trends in outcomes between treated and untreated groups were already
different before the treatment. The γl coefficients are expected to be non-significant if the parallel
trends assumption holds. Specification (7), sometimes called an event study, can therefore be
seen as a generalization of model (1) that allows the researcher to estimate treatment effects
more flexibly while providing evidence to support the parallel trends assumption.

The lead coefficients may capture anticipatory effects if units can react to the treatment
before it is implemented (see e.g. Laporte and Windmeijer 2005). In such cases, the researcher
may shift the start date of the treatment to the first period in which anticipatory effects may be
a concern (for example, when the policy is first announced). Borusyak and Jaravel (2017) and
Abraham and Sun (2020) also analyze this type of dynamic specification in staggered adoption
designs with heterogeneous treatment effects. Similarly to what happens in two-way FE models,
estimators for the βk coefficients may average across different treatment effects with misleading
weighting schemes including negative weights. Furthermore, Abraham and Sun (2020) show
that the γl coefficients may pick up some of the treatment effects in future periods, yielding
spurious significant estimates even when the parallel-trends assumption holds.

As suggested by the discussion in Section 3.2, these issues are not a concern when treatment
adoption is simultaneous, and in such cases Equation (7) can be used to estimate time-varying
treatment effects and test for pre-treatment parallel trends. On the other hand, Callaway and
Sant’Anna (2019) and Abraham and Sun (2020) propose alternative estimators that are robust
to effect heterogeneity based on separately estimating and averaging group-specific ATTs.
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3.5 Controlling for Covariates

So far we have only discussed the canonical two-way fixed effects specification that includes a
treatment indicator and unit and time fixed effects. In many cases, a researcher may suspect that
the parallel trends assumption will hold after conditioning on a vector of exogenous covariates
Zit, or may want to include observable characteristics to reduce the variability of the estimates.
A commonly used specification in this setting is one in which covariates enter linearly:

Yit = αi + δt + βDit + ZT
itγ + ηit

While the inclusion of covariates may make the parallel trends assumption more credible in
some contexts, covariate-adjusted estimators are still subject to the problems highlighted above
related to the negative weights with staggered adoption (de Chaisemartin and D’Haultfœuille,
forthcoming). See also S loczyński (2018) for related work on one-way fixed effects models.
Importantly, including covariates in this fashion implicitly imposes a linear relationship between
the outcome and the covariates, which may add misspecification bias. Abadie (2005) proposes a
semiparametric reweighting method to control for covariates in a difference-in-differences setting,
and Callaway and Sant’Anna (2019) generalize this method to allow for variation in treatment
timing and propose an estimator that is not subject to the weighting problems highlighted above.

4 Inference

For settings in which two-way fixed effects estimation does deliver interpretable measures of
causal effects, the next question is how to perform correct inference.4 As discussed in the
sampling assumption above, it is common to treat all the observations for a given unit as
belonging to a single cluster. The logic of this stems from the fact that environmental policies
are often set at a regional level (e.g. a county) and there are many other factors that affect the
outcome and are common within the region. Inference is based on statistics constructed from
cluster-robust standard errors, which allow for arbitrary error correlation within each cluster but
require that the errors be independent across clusters. These standard errors allow for flexibility
in the correlations among the errors within a cluster but reduce the sample size on which the
normality of the test statistic is based. We discuss how non-normality arises, what a researcher
can do to determine if their data set likely results in non-normality of the test statistic, and how
to conduct inference if the test statistic is non-normal.

Let Ω be the variance matrix for the errors {εit}. Because the errors are independent across
clusters, Ω is a block diagonal matrix, where diagonal block i corresponds to cluster (unit) i.
The structure is summarized as

E[εitεjs] 6= 0 if i = j

otherwise E[εitεjs] = 0. Importantly, the correlation structure for one unit need not be the same
as the correlation structure for any other unit.

Let X represent the matrix of all fixed effects and the treatment indicator and θ be the
vector that captures all the coefficients in (1), the individual and time fixed effects as well as

the treatment effect, β. Let θ̂ be the OLS estimator of θ with variance matrix V = V ar(θ̂|X).
Because Ω is block diagonal, the common expression

V = (XTX)−1XTΩX(XTX)−1,

simplifies considerably to

V = (XTX)−1
G∑
i=1

XT
i ΩiXi (XTX)−1,

4. This discussion assumes that the sample is drawn from an arbitrarily large population. In settings in which the
sample is a non-neglibible fraction of the population, an adjustment needs to be made. See Cochran 1946 and Abadie
et al. 2020.
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where Xi and Ωi correspond to the explanatory variables and error variance matrix for unit i.
This simplification greatly reduces the number of unknown terms in Ω, so it is possible to obtain
a consistent estimator of V without further restrictions on Ω. The widely used cluster-robust
variance estimator employs the OLS residuals for each unit, ε̂i, as

V̂ = (XTX)−1
G∑
i=1

XT
i ε̂iε̂

T
i Xi (XTX)−1. (8)

We study tests of a null hypothesis of the form aTθ. This encompasses a test of any one
coefficient as well as tests on linear combinations of the coefficients. The test statistic is the
t-statistic

tstat =
aT(θ̂ − θ)√

aTV̂ a
. (9)

In general, when estimating (1) interest centers on the treatment effect through the specific null
hypotheses H0 : β = 0, for which the test statistic takes the familiar form

tstat =
β̂

ŝβ̂
,

with ŝβ̂ the cluster-robust estimator of the standard error for β̂.

4.1 Effective Sample Size and Approximate Normality of the t statistic

It is common practice to report the number of clusters when basing hypothesis tests on cluster-
robust standard errors. It may not be clear exactly why this is done, given that the estimator
of the coefficients is governed by the sample size n. The reason is that the estimator of the
variance, V̂ , depends only on the variation between clusters, and so is a function of the number
of clusters rather than the sample size. To see this, consider an intercept-only model in place of
(1), so that ε̂it = Yit − Y . The cluster-robust estimator V̂ is a function of XT

i ε̂i, which in this
intercept only model equals

Ti∑
t=1

(Yit − Y i) +

Ti∑
t=1

(Y i − Y ),

where the first sum captures the within-cluster variation and the second sum captures the
between-cluster variation. Because the first sum is identically zero by construction, the cluster-
robust variance estimator is a function only of between cluster variation, which is governed by
the number of clusters, rather than the total number of observations.

The cluster-robust variance estimator in (8) is sensitive to heterogeneity in the between-

cluster variation. Carter et al. (2017) (CSS) establish that the mean-squared error of V̂ in-
creases with this variation. In establishing the asymptotic normality of tstat, CSS introduce an
adjustment to the sample size, that is an adjustment to the number of clusters, to account for
the heterogeneity. The adjusted number of clusters is called the effective number of clusters
because this is the relevant quantity to determine the accuracy of the normal approximation.

To fix ideas, consider the intercept-only model for which the heterogeneity over clusters is
given by the variation in Ti(Y i−Y ) over i, which depends on variation in both the cluster sizes,
Ti, and the cluster covariance matrices, Ωi. The adjustment is constructed as follows. First, for
each cluster construct the measure

γ∗i = (Ti)
−1
∑
i,j

Ωi,j(Ti)
−1, (10)
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where
∑
i,j Ωi,j is the sum of all of the elements in Ωi. The adjustment term is

Γ∗ =
1
G

∑G
i=1(γ∗i − γ∗)2

γ∗2
, (11)

where γ∗ = 1
G

∑G
i=1 γ

∗
i . If all the clusters have the same size, Ti = T for all i, and the same

error covariance matrices, Ωi = Ω for all i, then γ∗i = γ∗i and the adjustment term is zero. As
the heterogeneity across clusters increases, as would occur with variation in cluster sizes, Γ∗

increases.
The resulting effective number of clusters is

G∗ =
G

1 + Γ∗
. (12)

Because the adjustment is multiplicative, the effective number of clusters can be substantially
less than G, so that a large value of G is not sufficient to guarantee approximate normality of
tstat.

For a model with explanatory variables the cluster-level heterogeneity measure is

γ∗i = aT(XTX)−1XT
i ΩiXi(X

TX)−1a, (13)

which is then used to form the adjustement term in (11). Two further points stand out. First,
the adjustment differs with the coefficient under test. For example, if an explanatory variable
takes very different values over clusters, then the adjustment will be larger for test of the
corresponding coefficient. Second, the adjustment depends on the unknown cluster correlations
through Ωi. (Because Γ∗ is scale invariant, the correlation matrix can be used to construct the
adjustment.) In practice, the adjustment is often constructed with a unit correlation matrix,
in which all correlations equal 1, which generally provides an upper bound on Γ∗. This would
lead to conservative inference - if the adjustment constructed in this way leads to a large value
of the effective number of clusters, then approximate normality of the t statistic is justified.

4.2 Correct Inference

If the effective number of clusters is large, then the distribution of tstat is approximately normal.
When the effective number of clusters is smaller, two factors lead to non-normality of the t-
statistic. The first factor is the downward bias in the estimated standard error. Lower values
of G∗ lead to more substantial downward bias in the cluster-robust standard error. The second
factor is the increasing variation in the standard error. Lower values ofG∗ lead to larger variation
in the cluster-robust standard errors, which in turn leads to non-normality of the t-statistic. If
G∗ is extremely low, then the distribution of tstat can be bimodal.

MacKinnon and Webb (2017) study how best to approximate the distribution of tstat under
cluster heterogeneity. In their study, cluster sizes vary to reflect the relative populations of
the 50 US states. In this setting, tstat is not well approximated by a normal distribution (the
findings are based on a Student-t with G − 1 degrees-of-freedom with G = 50 or 100, which is
very close to a normal distribution).

To obtain more accurate inference, they study two alternative methods. The first is to use
the critical values from a Student − t(G∗). In their simulation setting, the true correlation
matrix that enters G∗ is a constant correlation matrix with all elements equal to 0.5. To more
closely capture this reduced level of correlation, they replace the unit correlation matrix with
a constant correlation matrix in which the correlation is estimated from the data. While the
estimation introduces a pre-test bias, in this setting the use of the estimated correlation leads
to an increase in the computed value of G∗, which in turn leads to rejection rates closer to the
nominal rate of 5%.

The second is to use a form of the bootstrap to compute a P -value. To capture the within-
cluster correlation structure the bootstrap resamples data by cluster, rather than by individual.
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Randomness in the bootstrap is not obtained by sampling randomly with replacement from the
set of clusters, but rather by introducing a scalar random variable for each cluster vi, which is
equally likely to be −1 or 1. The bootstrap sample is then constructed from {v1ε̂1, . . . , vGε̂G}
and is termed a wild cluster bootstrap. The P -value is then obtained as the proportion of
bootstrap t-statistics that exceed, in magnitude, the t-statistic from estimation of the original
data. In virtually all simulation settings, the rejection rate is remarkably close to the nominal
rate of 5%.

Because the wild cluster bootstrap is computationally intensive, it would be helpful to know
when the critical values from a normal distribution do provide rejection rates that are close to
the nominal rate. CSS show that G∗ is the key measure to answer this question and, that when
G∗ exceeds 50, the critical values from a normal distribution yield accurate inference.

The guide for testing in two-way fixed effects models, where the clusters have arbitrary
correlation, can be conveniently summarized. First, compute the effective number of clusters
for the coefficient under test. For example, Lee and Steigerwald (2018) provide a Stata command
to do just this. Then, if the effective number of clusters exceeds 50, conduct standard inference
in which the critical values from a normal distribution (typically ±1.96) are used. If the effective
number of clusters is less than 50, use the wild cluster bootstrap to form the P -value.

One final note. If the data arise from a randomized controlled trial, so that (1) is replaced
by

Yit = α+ βDit + εit,

then the cluster-robust variance estimator can be decomposed into two parts: the variance
estimated from the treatment clusters and the variance estimated from the control clusters.
Because there are no coefficients that are estimated across both the treatment and control
groups, the computation of the effective number of clusters in (12) is done separately for the
treatment and control groups and the effective number of clusters for estimation of β is then a
weighted average of the effective number of clusters for the treatment G∗1 and control G∗0 groups.

5 Empirical Illustration

To illustrate how these results on estimation and inference can be incorporated in practice, we
turn to the analysis by Davis and Wolfram (2012), who measure the effect of a law encouraging
the sale of power generation plants by public utilities on the emission of greenhouse gases. The
authors find that divestment - the sale of nuclear reactors by public utilities to independent
(non-utility) power producers - led to a large gain in operating efficiency at these reactors (on
the order of 10 percentage points) and a consequent reduction in the need for electricity from
coal and natural gas power plants, leading to a large reduction in greenhouse gas emissions.

Within the analysis, observations from a nuclear reactor that is owned by independent power
producers are in the treatment state, while those from reactors owned by public utilities are in the
untreated state. Since switching from public to private ownership is likely to be correlated with
both observable and unobservable firm characteristics, a simple comparison between privately-
and publicly-owned firms would yield a biased and inconsistent estimator of the effect of interest.
For this reason, the identification strategy is to compare the difference over time in operating
efficiency for the reactors that changed ownership, with the corresponding difference for reactors
that remained under the control of a public utility. This strategy fits perfectly within the context
of Section 3, as the number of treated firms varies over time. The inclusion of firm-level and time
fixed effects can mitigate the endogeneity of the treatment by controlling for (i) all observable
and unobservable firm-level characteristics that are fixed over time, and (ii) secular trends and
other time-varying factors that affect all firms equally.

To provide a measure of these treatment effects, Davis and Wolfram (2012) estimate Equation
(1) with a forty-year monthly panel of all nuclear reactors in the United States. For illustration
purposes, we reproduce this result after collapsing the data at the yearly level, and using data
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only after 1990 for reactors with complete reporting and no long outages. These data modifi-
cations generate a balanced panel of reactors that operate under normal load for the duration
of the panel, consistent with the additional sensitivity tests performed by Davis and Wolfram.
We estimate the same models as reported in Table 1 in Davis and Wolfram and display the
results in Table 1. The two way fixed effects model is estimated in column (2), revealing that
that a change in ownership structure is associated with an 8 percentage point improvement in
reactor operating efficiency. This result is comparable to the estimated 10 percentage point
improvement reported in Davis and Wolfram.

Table 1: Replication results

(1) (2) (3) (4)

Dit
5.59***
(1.34)

8.26***
(2.64)

7.88***
(2.31)

7.91***
(2.24)

year-of-sample fixed effects (20 years) Yes Yes Yes Yes
Reactor fixed effects (89 reactors) No Yes Yes Yes
Reactor Age (cubic) No No Yes Yes
Other FE, Weights or Covariates No No No Yes

Number of cross sectional units 89 89 89 89
Number of clusters 54 54 54 54
Effective number of clusters 38.83 38.83 38.83 38.83
Observations 1,780 1,780 1,780 1,780
R2 0.29 0.38 0.39 0.39

Notes: replication results of Davis and Wolfram Table 1, using modified data. The panel from Davis and Wolfram
is collapsed at the yearly level, data prior to 1990 is dropped, and reactors with incomplete reporting or long outages
are dropped. Results account for clustering at the plant level.

The authors demonstrate the importance of including firm-level and time fixed effects by
estimating a restricted version of (1), in which the reactor fixed effects are omitted. These
estimates are reproduced using our subsample in column (1) of Table 1. Omitting reactor
fixed effects leaves out observed and unobserved factors associated with treatment adoption
and substantially changes the estimate. They further assess the robustness of their results
by including increasingly rich sets of explanatory variables (two of these sets are reproduced
using our subsample in column (3) of Table 1 and finding that the estimated coefficient on the
treatment indicator is largely unaffected.

Within the context of the two-way fixed-effects estimating equation, there is a stable rela-
tionship between ownership change and operating efficiency. To assess the significance of the
relation Davis and Wolfram construct cluster-robust standard errors. Because some nuclear
plants contain more than one reactor, the standard errors are clustered at the plant level to
account for unobserved factors that can affect multiple reactors at the same plant. In this set-
ting, clusters are heterogeneous for several reasons: the number of reactors varies from plant to
plant, the values of the additional explanatory variables (such as the age, type, or manufacturer
of the reactor) vary over plants, and the correlations in the unobserved factors are likely unique
to each plant.

We use the clusteff Stata command (Lee and Steigerwald 2018) to compute the effective
number of clusters for test of significance of the treatment coefficient. We report the results for
the baseline specification in column (2) of Table 1. There are 54 plants in the sample and the
computed effective number of clusters is 38.83. The effective number of clusters may not be large
enough to justify approximating the t-statistic by a normal distribution. As such, we check the
robustness of the inference results by calculating wild-bootstrap p-values and 95% confidence
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intervals. The resultant p-value is ¡0.001 and the 95% confidence interval is [2.8,13.83] again
allowing us to reject the null hypothesis of no effect. When cluster-robust standard errors are
used the p-value is 0.003 and the 95% confidence interval is [2.97,13.56].

5.1 Average Treatment Effects

To interpret the estimated divestment coefficient as an average treatment effect, we first need to
be clear about how the treatment effect differs over observations. Figure 3 contains the number
of newly treated reactors in each year of the panel.

Figure 3: Newly treated reactors over time
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As Figure 3 reveals, treatment assignment follows a staggered adoption design. With this
staggered adoption of treatment, there are a number of treated groups (plants treated in the
first year, plants treated in the second year, and so on), each with their own average treatment
effect. Further, the average treatment effect in the year of entry may differ from the average
treatment effect for the same group of reactors in the second year of treatment. In the two-way
fixed-effects equation we have only one treatment coefficient to capture all of these effects, which
is the source of the misspecification of the conditional mean.

With a staggered adoption design, the two-way fixed effects estimator is a linear combination
of all the individual treatment effects. Proposition 3 shows that the weights can be computed
simply from the fraction of treated units in each period and the timing of entry into treatment.
We compute the weights test for the baseline specification from Table 1. The summary of the
computed weights is contained in Table 2.
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Table 2: Summary of weights

Number of weights 63
Mean 0.0159
Median 0.0069
Max 0.0579
Min 0.0017

Because the linear combination generated from these weights is not a weighted average of
the period average treatment effects, it is not possible to interpret the two-way fixed effects
estimator as an average treatment effect. Yet the presence of weights that are all positive does
rule out one pathological case. If there were negative weights it would be possible to get a
negative estimate of the coefficient even if all of the underlying treatment effects were positive.
With all positive weights, this is not possible.

As shown in Corollary 2, the 2WFE estimator recovers an average of the ATTs over time
when treatment adoption is simultaneous. Based on this fact, when treatment adoption is
staggered, one can always estimate the treatment effects for each treated group separately,
essentially recasting a staggered adoption design as multiple simultaneous adoption designs
(with a common untreated group).

To illustrate how this idea can be used in practice, we restrict our sample to the groups
entering treatment in 2000, the group entering treatment in 2001 and the untreated group. The
results from the 2WFE estimation are shown in Table 3. While both estimates are positive,
consistent with the results in Table 1, they suggest some heterogeneity across treated groups: the
estimated average effects are 5.25 for the group treated in 2000 and 12.87 for the group treated
in 2001. Two main factors can explain these differences. First, these estimates average over
each group’s treated period (see Corollary 2), and thus the average effect for the group treated
in period 2000 includes one more treated period. On the other hand, differences in effects can
be due to the fact that groups entering treatment in different periods can be heterogeneous and
differ in both observed and unobserved characteristics. Additionally, the difference in coefficients
could be explained by sampling variability. We further explore these differences in the upcoming
sections.

Table 3: Estimation results - 2WFE

Treated in 2000 Treated in 2001

Dit
5.25
(4.67)

12.87***
(3.72)

G∗A 8.56 12.68
Bootstrap 95% CI [-4.66,17.7] [5.07, 21.3]
year-of-sample fixed effects Yes Yes
Reactor fixed effects Yes Yes
Number of cross-sectional units 60 66
Observations 1200 1320

Notes: estimation results from the two-way fixed effects model for the two group multiple period case, for the group
treated in 2000 (column 1), and the group treated in 2001 (column 2). Results account for clustering at the plant
level.

To assess significance, we again cluster at the plant level. The effective number of clusters for
the groups treated in 2000 and 2001 are, respectively, 8.56 and 12.68, which strongly suggests
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that the normal approximation may not be accurate. Hence, we provide bootstrap confidence
intervals for inference. Our inference procedure rejects the null of no average effect for the group
treated in 2001, but fails to reject it for the group treated in 2000. Notice that this latter result
may be due to low statistical power given the small number of units.

An alternative estimation method consists in running a 2WFE regression including an in-
teraction term as follows:

Yit = αi + δt + β2001Dit + βdifDit1(t∗i = 2000) + εit (14)

In Equation (14), β2001 estimates the average effect for the group treated in 2001, while βdif
estimates the difference between the effects for the groups treated in 2001 and 2000 (which
implies that the effect for the group treated in 2000 is β2001 + βdif). This estimation method
is a variation of the ones proposed by Gibbons et al. (2018) and Abraham and Sun (2020).
The results, presented in Table 4, are very similar to the ones in Table 3, but also provide
a straightforward way to evaluate the difference in treatment effects across groups by simply
evaluating whether βdif = 0. The bootstrap confidence interval for this coefficient is [−18.1, 3.75],
which indicates that the effects for the two groups are not significantly different (although again
this may be due to low statistical power given the small number of treated units).

Table 4: Estimation results - interacted model

(2)

Dit
12.46***
(3.62)

Dit1(t∗i = 2000)
-7.14
(4.77)

Bootstrapped 95% CI for βdif [-18.1, 3.76]
year-of-sample fixed effects (20 years) Yes
Reactor fixed effects Yes
Number of cross sectional units 75
Observations 1500

Notes: estimation results from the interacted model in Equation (14). Results account for clustering at the plant
level.

5.2 Pre-Treatment Trends and Dynamic Effects

The possibility of interpreting the estimated results as (weighted averages of) causal effects
depends crucially on the plausibility of the parallel trends assumption. While this assumption
is not directly testable, some evidence can be provided to support its validity, as explained in
Section 3.4. Figure 4 provides a visual inspection of the pre-treatment trends for treated and
untreated firms for the group treated in 2000 (left panel) and the group treated in 2001 (right
panel). Overall, the estimated trends seem to follow a similar pattern, but a visual inspection
is not a formal test. We next describe a dynamic specification that does lead to a formal test
of equality of pre-treatment trends.
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Figure 4: Evolution of the outcome over time
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(a) Treated in 2000 versus untreated
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(b) Treated in 2001 versus untreated

Notes: outcome trends for the treatment group (red) and the untreated group (blue). The left panel considers the
treatment group to be the group treated in 2000, while the right panel considers the treatment group to be the
group treated in 2001.

To provide a more formal analysis of the parallel trends assumption, as well as give direct
estimates of the dynamic treatment effects, we now estimate Equation (7). The results are
shown in Figure 5, with the left panel showing the results for the group treated in 2000 and the
right panel showing the results for the group treated in 2001.

Figure 5: Dynamic effects
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(a) Effects for units treated in 2000
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(b) Effects for units treated in 2001

Notes: results of the dynamic treatment effect estimation for the two group multiple period case, with
bootstrapped 95% confidence intervals. ‘P’ represents a placebo test, where the number corresponds to the number
of years before treatment. ‘B’ represents the beta of treatment, where the number corresponds to the number of
years after treatment. The left panel considers the treatment group to be the group treated in 2000, while the right
panel considers the treatment group to be the group treated in 2001. Results account for clustering at the plant
level.

In Figure 5 we are interested in both the pre-treatment effects (placebo tests) and the
dynamic treatment effects. The figure illustrates that none of the placebo tests are statistically
different from zero on their own for either the group treated in 2000 (panel a) or the group
treated in 2001 (panel b) – providing supportive evidence of the common trends assumption for

20



both groups. However, recent work raises issues about using the estimated coefficients to form
valid placebo tests of the parallel trends assumption (see Abraham and Sun 2020). We discuss
these issues in Section 6.

Figure 5 also shows that treatment effects over time are mostly positive and are statistically
different from zero for the group treated in 2001 (panel b), and overall suggests that the effects
are relatively stable over time, at least for this treated group during the period under study.
However, for the group treated in 2000 (panel a), the treatment effects are not statistically
different from zero.

6 Discussion and Some Practical Recommendations

6.1 Estimation

One takeaway from the discussion in this paper is that when all treated units enter treatment
simultaneously, the two-way fixed effects estimator recovers a simple average of the average
treatment effects on the treated over time, which has a clear causal interpretation as long as the
parallel trends assumption holds. In addition, it is easy in this setting to separately estimate
the ATTs at different time periods through a dynamic specification or event-study design to
explore how the average effect of the policy varies over time.

On the other hand, when there is variation in treatment timing (staggered treatments), the
two-way fixed effects estimator may not have a clear causal interpretation. In such cases, the
researcher should favor more flexible specifications that do not pool all the data into a single
regression. For instance, it is straightforward in this case to estimate average effects separately
for different treatment groups, as we illustrate in our empirical application. With these esti-
mates, the researcher can explore the heterogeneity of treatment effects across groups, or pool
these effects into a single summary measure using a weighting scheme that is deemed reason-
able, as suggested by Callaway and Sant’Anna (2019) and Abraham and Sun (2020). Another
possibility is to focus on alternative estimands like the ones proposed by de Chaisemartin and
D’Haultfœuille (forthcoming).

6.2 Inference

The key takeaway regarding inference is to carefully consider the sample size on which the
estimator is based. The distribution of the cluster-robust test statistic is governed by the
effective number of clusters, which can be no bigger than the total number of clusters in the
sample. If the effective number of clusters is larger than 20, then a normal approximation is
appropriate for the test statistic. If the effective number of clusters is smaller, then a wild-
cluster bootstrap should be used to approximate the distribution of the test statistic. Hence,
good practice is to report the effective number of clusters and to use it to justify either the
normal or bootstrap approximations.

6.3 Assessing the Parallel Trends Assumption

The causal interpretation of the estimands and estimators discussed in this paper relies crucially
on the parallel trends assumption, according to which treated and control units would have
experienced the same average trend in outcomes had the policy not been implemented. The
parallel trends assumption has become the focus of several recent an ongoing studies. While
an in-depth discussion of this rapidly growing literature is beyond the scope of our paper, here
we briefly discuss several important issues related to this assumption and how to assess it. We
refer to reader to the original papers (and references therein) for further details.
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6.3.1 Interpretation of the Pre-Treatment Trends Test

The parallel trends assumption is untestable because it involves counterfactual magnitudes,
and researchers usually focus on testing whether trends were parallel before the policy is im-
plemented. While finding parallel trends before the policy may, under some conditions, be
interpreted as evidence to support the identification assumption, parallel pre-treatment trends
are neither sufficient nor necessary for parallel trends after the policy. Therefore, failing to
find statistically significant differences in pre-treatment trends does not guarantee that the
identification assumption holds. Kahn-Lang and Lang (2019) argue that in such contexts, the
researcher needs to justify why this pattern can be expected to continue after the policy, which
also requires understanding why the groups differ in levels to begin with. These authors also
stress that parallel trends tests may be sensitive to the choice of the time period, as analyzing
long- and short-run trends often lead to different conclusions. On the other hand, Laporte and
Windmeijer (2005) note that the pre-trends tests can fail when treatments have anticipatory
effects.

Finally, as mentioned previously, Abraham and Sun (2020) find that in the dynamic spec-
ification (7), the lead coefficients commonly used to test for parallel trends may partially pick
up future treatment effects yielding significant results even when the pre-treatment trends are
indeed parallel. For these reasons, the results form the pre-treatment trends test should always
be interpreted with caution.

6.3.2 Testing Issues

Several studies have noted that pre-trends tests may often have limited statistical power to detect
plausible differences in trends before the treatment (Bilinski and Hatfield 2018; Freyaldenhoven
et al. 2019; Kahn-Lang and Lang 2019; Roth 2019). Hence, failing to reject the hypothesis that
pre-treatment trends are parallel is not the same as confirming that they are. Furthermore,
Bilinski and Hatfield (2018) note that testing the null hypothesis that there is no difference in
trends before the treatment inverts the role of type I and type II errors, as traditional testing
methods guard against incorrectly concluding that an effect is non-zero (i.e. incorrectly rejecting
the null of no effect). This implies that, if a parallel trends test has power of, say, 80 percent
against a certain alternative, the probability of failing to detect this difference in trends when it
actually exists is 20 percent. As a result, non-negligible differences in pre-treatment trends may
remain undetected with high probability, which may lead to biased and inconsistent estimates.

On the other hand, conditioning the estimation of treatment effects on whether the pre-
treatment trends test rejects or not can result in invalid inference due to pre-testing, a well
known fact in statistics. Roth (2019) shows that the bias of estimators and the coverage rates
of confidence intervals conditional on passing a pre-treatment trends test can be worse that the
unconditional ones in relevant cases.

6.3.3 Robust Methods

Given the problems associated with pre-testing discussed above, empirical researchers may want
to consider alternative methods that are robust to some violations of the parallel trends assump-
tion. For example, Abadie (2005), Callaway and Sant’Anna (2019) and Sant’Anna and Zhao
(2020) consider cases in which the parallel trends assumption holds after conditioning on a
set of observed covariates and propose semiparametric inverse-probability-weighting estimators.
Freyaldenhoven et al. (2019) exploit the availability of a covariate that is unaffected by the
treatment but related to unobserved confounders. This covariate can be used as a measure of
how much the estimated effect is due to the actual treatment effect, and how much is due to
difference in outcome trends. Based on this covariate, they propose a 2SLS estimator that is
robust to pre-event differential trends generated by this endogeneity in a linear setting with
homogeneous effects.

A related literature considers partial identification of average effects when the trends are
allowed to differ in specific ways. Manski and Pepper (2018) analyze the sensitivity of the iden-
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tified set to different assumptions that allow for nonparallel trends, restricting the magnitude of
the difference in trends without requiring it to be zero. Rambachan and Roth (2019) propose a
method that allows the researcher to restrict the way in which the assumption can be violated
incorporating information on pre-treatment trends. Based on this, they provide partial identi-
fication and uniformly valid inference results for average treatment effects.

A key message from this section is that while parallel pre-treatment trends tests may be
useful in assessing the validity of the identification assumption, they should not be taken as an
“all-or-nothing” rule that unequivocally determines the credibility of a study. The validity of
the parallel trends assumption needs to be assessed and justified on a case by case basis. This
identification assumption is fundamentally untestable and hence there is no statistical procedure
that can ensure or rule out its validity. For this reason, whether the parallel-trends assumption
holds cannot be determined solely on statistical grounds, and empirical evidence in its support
needs to be complemented with institutional knowledge and economic theory. On the other
hand, the recent methods discussed above that are robust to some violations of the parallel-
trends assumption are a promising avenue to reinforce the credibility of studies based on panel
data.

7 Conclusion

The two-way fixed effects specification with panel data is a common framework in which to assess
the effectiveness of programs or policies with environmental targets. These programs can have
effects that may be unique to each unit subject to the program. If the effects are heterogeneous,
then the estimated coefficient from the two-way fixed effects equation may not accurately reflect
these effects and could show a negative effect of the program when each of the individual effects
are positive. If the treatment occurs in only a single period, then this problem does not arise
and the estimated coefficient captures an average of the individual treatment effects.

Inference on this parameter is most often done with cluster-robust standard errors, which
allow for arbitrary correlations over time for each unit in the panel. It is common to base the
approximate normality of the test statistic on the number of units but this requires that the
units have similar error covariance matrices. As the point of cluster-robust inference is to allow
for dissimilarity in these matrices, it is highly likely that the units are dissimilar. We show that
when the units are dissimilar, the number of units must be adjusted downward to reflect this
dissimilarity. If this adjusted number is large (in practice, above 50), then standard inference
with critical values from a normal distribution is appropriate. If the adjusted number is smaller,
then inference should be done with a wild-cluster bootstrap.
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Appendix

A Proof of Proposition 1

Because units with t∗i = s are untreated in period t and treated in period t′, whereas units with
t∗i = u remain untreated in both periods,

E[Yit′ − Yit|t∗i = s]− E[Yit′ − Yit|t∗i = u] = E[Yit′(1)− Yit(0)|t∗i = s]− E[Yit′(0)− Yit(0)|t∗i = u]

= E[Yit′(1)− Yit′(0)|t∗i = s]

+ E[Yit′(0)− Yit(0)|t∗i = s]− E[Yit′(0)− Yit(0)|t∗i = u]

= E[Yit′(1)− Yit′(0)|t∗i = s]

= E[τit′ |t∗i = s],

where the third equality follows from the parallel-trends assumption. �

B Proof of Proposition 2

To analyze the population parameter β, define the population analogs of the double-demeaned
variables D̈it and Ÿit as:

D̃it = Dit −Di − πt + E[Di]

Ỹit = Yit − Y i − E[Yit] + E[Y i]

which replace the sample averages over i by their corresponding population expectations (recall

that T is fixed in our setting). By construction, E[D̃it] =
∑T
t=0 D̃it = 0, which can be verified

by direct calculation. Based on these variables, it is possible to eliminate the individual and
time fixed effects in Equation (1) by rewriting it as:

Ỹit = βD̃it + ε̃it, t = 0, . . . , T.

which is the population version of the double-demeaned model. By definition, the linear pro-
jection coefficient β in this equation is given by:

β =

∑T
t=0 E[ỸitD̃it]∑T
t=0 E[D̃itD̃it]

=

∑T
t=0 E[YitD̃it]∑T
t=0 E[DitD̃it]

where the second equality uses that E[D̃it] =
∑T
t=0 D̃it = 0. Plugging in the potential outcomes,

β =

∑T
t=0 E[YitD̃it]∑T
t=0 E[DitD̃it]

=

∑T
t=0 E[(Yit(0)− Y i(0))D̃it]∑T

t=0 E[DitD̃it]
+

∑T
t=1 E[τitDitD̃it]∑T
t=1 E[DitD̃it]

,

where we used the facts that
∑T
t=0 E[Y i(0)D̃it] = E[Y i(0)

∑T
t=0 D̃it] = 0 for the first term and

that Di0 = 0 for the second term. For the first term, use the fact that

Yit(0)− Y i(0) =

t∑
s=1

s

T + 1
∆is(0)−

T∑
s=t+1

(
1− s

T + 1

)
∆is(0)

where ∆is(0) = Yis(0)− Yis−1(0), and thus the parallel-trends assumption implies that

E[Yit(0)− Y i(0)|Di] = E[Yit(0)− Y i(0)]
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so the first term equals zero using again that E[D̃it] = 0. Next, consider the term E[τitDitD̃it].
Recall that Dit = 1(t∗i ≤ t). We have that

E[τitDitD̃it] = E{E[τit|t∗i ]DitD̃it} = E

{
T+1∑
s=1

E[τit|t∗i = s]1(t∗i = s)DitD̃it

}

= E

{
T+1∑
s=1

E[τit|t∗i = s]1(t∗i = s)1(t∗i ≤ t)D̃it

}
= E

{
t∑

s=1

E[τit|t∗i = s]1(t∗i = s)1(t∗i ≤ t)D̃it

}

=

t∑
s=1

E[τit|t∗i = s]E
{
1(t∗i = s)DitD̃it

}
On the other hand,

Di =
1

T + 1

T∑
t=0

Dit =
1

T + 1

T∑
t=0

1(t∗i ≤ t) = 1− t∗i
T + 1

E[t∗i ] = E[t∗i |D∗i = 1]E[D∗i ] + (T + 1)(1− E[D∗i ])

E[Di] = E[D∗i ]− E[t∗i |D∗i = 1]E[D∗i ]

T + 1

DitD̃it = Dit

(
E[D∗i ]− E[Dit] +

t∗i − E[t∗i |D∗i = 1]E[D∗i ]

T + 1

)
E[DitD̃it] = E

[
1(t∗i ≤ t)

(
E[D∗i ]− E[Dit] +

t∗i − E[t∗i |D∗i = 1]E[D∗i ]

T + 1

)]
=

t∑
s=1

(
E[D∗i ]− E[Dit] +

s− E[t∗i |D∗i = 1]E[D∗i ]

T + 1

)
P[t∗i = s]

1(t∗i = s)DitD̃it = 1(t∗i = s)1(s ≤ t)
(
E[D∗i ]− E[Dit] +

s− E[t∗i |D∗i = 1]E[D∗i ]

T + 1

)
E[1(t∗i = s)DitD̃it] = P[t∗i = s]1(s ≤ t)

(
E[D∗i ]− E[Dit] +

s− E[t∗i |D∗i = 1]E[D∗i ]

T + 1

)
.

Collecting all the results,

β =

∑T
t=1

∑t
s=1 E[τit|t∗i = s]

(
E[D∗i ]− E[Dit] +

s−E[t∗i |D
∗
i =1]E[D∗i ]

T+1

)
P[t∗i = s]∑T

t=1

∑t
s=1

(
E[D∗i ]− E[Dit] +

s−E[t∗i |D∗i =1]E[D∗i ]
T+1

)
P[t∗i = s]

as required. �

C Proof of Proposition 3

β̂FE =

∑
t

∑
i Yit(0)D̈it∑

t

∑
iDitD̈it

+

∑
t

∑
i τitDitD̈it∑

t

∑
iDitD̈it

=

∑
t

∑
i(Yit(0)− Y i(0))D̈it∑

t

∑
iDitD̈it

+

∑
t

∑
i τitDitD̈it∑

t

∑
iDitD̈it

where the second equality follows from the fact that
∑
t D̈it = 0. The first term equals zero in

expectation by a previous argument. Next note that for t = 0, . . . , T ,

Di =
1

T + 1

T∑
t=0

Dit =
1

T + 1

T∑
t=0

1(t∗i ≤ t) = 1− t∗i
T + 1

D =
1

N

N∑
i=1

Di = 1− t
∗
D
∗

+ (T + 1)(1−D∗)
T + 1

= D
∗ − t

∗
D
∗

T + 1
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where D
∗

= 1
G

∑
iD
∗
i , Dt = 1

G

∑
iDit and t

∗
=
∑
i t
∗
iD
∗
i /
∑
iD
∗
i . Therefore,

D̈it = Dit − 1−Dt +D
∗

+
t∗i − t

∗
D
∗

T + 1

and

DitD̈it = Dit

(
D
∗ −Dt +

t∗i − t
∗
1D
∗

T + 1

)
= 1(t∗i ≤ t)

(
D
∗ −Dt +

t∗i − t
∗
D
∗

T + 1

)

=

t∑
s=1

1(t∗i = s)

(
D
∗ −Dt +

s− t∗D∗

T + 1

)

This implies that

∑
i

τitDitD̈it =
∑
i

t∑
s=1

τit1(t∗i = s)

(
D
∗ −Dt +

s− t∗D∗

T + 1

)

=

t∑
s=1

{(
D
∗ −Dt +

s− t∗D∗

T + 1

)∑
i

τit1(t∗i = s)

}
∑
i

DitD̈it =
∑
i

t∑
s=1

1(t∗i = s)

(
D
∗ −Dt +

s− t∗D∗

T + 1

)

=

t∑
s=1

{(
D
∗ −Dt +

s− t∗D∗

T + 1

)∑
i

1(t∗i = s)

}

=

t∑
s=1

(
D
∗ −Dt +

s− t∗D∗

T + 1

)
N∗s

where N∗s =
∑
i 1(t∗i = s). Taking conditional expectations of the first term,

E

[∑
i

τitDitD̈it

∣∣∣∣∣D
]

=

t∑
s=1

{(
D
∗ −Dt +

s− t∗D∗

T + 1

)∑
i

E[τit|Di]1(t∗i = s)

}

=

t∑
s=1

{(
D
∗ −Dt +

s− t∗D∗

T + 1

)∑
i

E[τit|t∗i = s]1(t∗i = s)

}

=

t∑
s=1

{(
D
∗ −Dt +

s− t∗D∗

T + 1

)
E[τit|t∗i = s]

∑
i

1(t∗i = s)

}

=

t∑
s=1

E[τit|t∗i = s]

(
D
∗ −Dt +

s− t∗D∗

T + 1

)
N∗s

where the second equality uses independence across i and the fact that Di is a deterministic
function of t∗i and the third equality uses identical distributions across i. Collecting all the
results,

E[β̂FE|D] =

∑T
t=1 E

[∑G
i=1 τitDitD̈it

∣∣∣D]∑T
t=1

∑G
i=1DitD̈it

=

∑T
t=1

∑t
s=1 E[τit|t∗i = s]

(
D
∗ −Dt + s−t∗D∗

T+1

)
p̂s∑T

t=1

∑t
s=1

(
D
∗ −Dt + s−t∗D∗

T+1

)
p̂s

where p̂s = 1
GN

∗
s , which gives the required result.
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Finally, for the second part, for any variable Zit,

1

G

∑
i

Zit(Dit −Di −Dt +D) =
1

G

∑
i

Zit(Dit −Di)− (Dt −D)
1

G

∑
i

Zit

and

Dt =
1

G

∑
i

Dit →P E[Dit], D =
1

T + 1

∑
t

Dt →P E[Di].

Then, by the law of large numbers, as long as the required moments are bounded, as G→∞,

1

G

∑
i

ZitD̈it =
1

G

∑
i

ZitD̃it + oP(1)→P E[ZitD̃it].

It follows that

β̂FE =

∑
t YitD̃it∑
tDitD̃it

+ oP(1)→P

∑
t E[YitD̃it]∑
t E[DitD̃it]

= β

which completes the proof. �

D Proof of Corollary 1

From the proof of Proposition 3,

β =

∑T
t=0 E[YitD̃it]∑T
t=0 E[DitD̃it]

.

Therefore,

β =

∑T
t=0 E[YitD̃it]∑T
t=0 E[DitD̃it]

=

∑T
t=0 E[Yit(0)D̃it]∑T
t=0 E[DitD̃it]

+

∑T
t=0 E[τitDitD̃it]∑T
t=0 E[DitD̃it]

=

∑T
t=0 E[E[τit|Dit = 1]DitD̃it]∑T

t=0 E[DitD̃it]
= τ

∑T
t=0 E[DitD̃it]∑T
t=0 E[DitD̃it]

= τ

using that for any t, E[τit|Dit = 1] =
∑T
s=1 E[τit|t∗i = s]P[t∗i = s|Dit = 1] = τ . The remaining

results follow by applying Proposition 3 to the case with constant treatment effect. �

E Proof of Corollary 2

In this case we have that Dt = D
∗
1(t∗ ≤ t), t∗1 = t∗ and p̂s = D

∗
1(s = t∗) and thus

E[β̂FE|D] =

∑T
t=1

∑t
s=1 E[τit|t∗i = s]

(
D
∗ −Dt + s−t∗D∗

T+1

)
p̂s∑T

t=1

∑t
s=1

(
D
∗ −Dt + s−t∗D∗

T+1

)
p̂s

=

∑T
t=t∗ E[τit|D∗i = 1]t∗D

∗
(1−D∗)/(T + 1)∑T

t=t∗ t
∗D
∗
(1−D∗)/(T + 1)

=

∑T
t=t∗ E[τit|D∗i = 1]

T + 1− t∗

where we used that t∗i = t∗ ⇔ D∗i = 1. Similarly, Et[Dit] = E[D∗i ]1(t∗ ≤ t), E[t∗i |D∗i = 1] = t∗

and P[t∗i = s] = E[D∗i ]1(s = t∗) and the result for the probability limit follows analogously. �
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