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Abstract

This article introduces clusteff, a new Stata command for check-

ing the severity of cluster heterogeneity in cluster robust analyses.

Cluster heterogeneity can cause a size distortion leading to under-

rejection of the null hypothesis. Carter, Schnepel, and Steigerwald

(2015) develop the effective number of clusters to reflect a reduction

in the degrees of freedom, thereby mirroring the distortion caused

by assuming homogenous clusters. clusteff generates the effective

number of clusters. We provide a decision tree for cluster robust anal-

ysis, demonstrate the use of clusteff, and recommend methods to

minimize the size distortion.

1 Model

The basic setting is to consider a specification, for n observations grouped

into G clusters, of the form

yig = xTigβ + uig (1)
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where observation i belongs to cluster g with ng observations in cluster g. We

assume E[uig|xig] = 0, so that (1) captures the conditional mean of yig. The

error term uig is allowed to have arbitrary correlation within a cluster, where

Ωg is the covariance matrix for cluster g conditional on xg, but is assumed to

be independent across clusters. In this paper, we provide a Stata program

that estimates the effective number of clusters, a diagnostic tool used to

measure severity of cluster heterogeneity (including lack of balance in the

covariate matrix) derived by Carter, Schnepel, and Steigerwald (CSS) (2015).

The question of interest is to test the null hypothesis H0 : aTβ = aTβ0,

where β0 is the value of β under the null hypothesis and a is a vector selecting

the coefficients to be included in the test. We focus on the conventional test

statistic constructed from β̂ - the OLS estimator of β in (1):

t =
aT (β̂ − β0)√

aT V̂ a
(2)

where V̂ is a cluster-robust estimator of V - the variance of β̂ conditional on

the covariate matrix X. The cluster-robust estimator of V is

V̂ = c(XTX)−1(
G∑
g=1

XT
g ûgû

T
gXg)(X

TX)−1,

where Xg and ug are the covariate matrix and error, respectively, for cluster

g and c = G(n−1)
(G−1)(n−k)

is designed to (partially) offset the downward bias in V̂ .

The consistency of V̂ and the asymptotic normality of t is established

under general conditions in CSS (2015). As CSS describe, consistency of V̂

cannot be established simply by allowing the number of observations n to

grow but rather depends crucially on allowing the number of clusters G to

grow. To understand why this is so, consider a data set with a fixed number

of clusters but an increasing number of observations in each cluster. As more

observations are added to each cluster, the dimension of ûg grows and more

parameters are added to Ωg. In consequence ûgû
T
g := Ω̂g is not a consistent
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estimator of Ωg and consistency of V̂ can only be obtained by averaging Ω̂g

over an increasingly large number of clusters. Thus the size of G is often

advocated as a guide to inference. According to this guide, if G is large (say

greater than 50), then the appropriate critical values to use when assessing

t are obtained from a normal distribution.

The standard practice of using G as the sole criterion when selecting

critical values relies on an assumption that clusters are homogenous in the

sense that E
(
XT
g ΩgXg

)
is identical over clusters. A sufficient condition for

this assumption is that all clusters have the same: size, ng = n
G

; covariate

matrices, Xg, that are identical over g; and covariance matrices, Ωg, that are

identical over g. As these sufficient conditions rarely occur in practice, CSS

investigate the behavior of t when clusters are heterogeneous. They find

that the test often falsely rejects (that is, the critical values from a normal

distribution are too small) under cluster heterogeneity.

Importantly, CSS report a simple measure that can detect the extent to

which cluster heterogeneity affects the test statistic. The measure adjusts the

number of clusters downward to reflect the degree of cluster heterogeneity,

such that the larger the amount of cluster heterogeneity, the greater the

downward adjustment in the number of clusters. The resultant adjusted

measure is the effective number of clusters. If the effective number of clusters

is small, regardless of the magnitude of G, critical values that are larger than

those from a normal distribution should be employed. These critical values

may be obtained from a student’s t distribution or from bootstrapping, as

explained below.

Observe that V =
∑
γg with γg = aT (XTX)−1(XT

g ΩgXg)(X
TX)−1a.

Following CSS, we denote the effective number of clusters as G∗ and define

it as

G∗ =
G

1 + Γ
, Γ =

1

G

G∑
g=1

(
γg − γ
γ

)2, (3)
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with γ = G−1
∑
γg. Simply put, cluster homogeneity requires γg = γ for all

clusters, so variation in γg arises from cluster heterogeneity. If the clusters

are homogenous, then Γ = 0 and G∗ = G. If the clusters are heterogeneous,

then Γ > 0 and G∗ < G. A greater difference between G∗ and G is indicative

of more heterogeneous clusters.

Special attention to a, a selection vector of length k, is required here. The

selection vector is derived from the hypothesis to be tested, H0 : aT θ = aT θ0.

Consequently, a unique value of G∗ is generated based on each hypothesis to

be tested. To be clear, the method is appropriate for tests of hypotheses on

single coefficients, for example, H0 : β1 = 0, as well as linear combination of

coefficients, H0 : β1 + β2 = 0.

If G∗ is small, inference should be undertaken with care. CSS (2015)

show that the test statistic using V̂ is normal as G∗ →∞, which means the

normal approximation should work well if G∗ is large. If G∗ is small, then

the appropriate critical values are larger than those from a normal distribu-

tion, and mistakenly applying the normal critical values leads to incorrectly

rejecting the null hypothesis far too often (the empirical size of the test ex-

ceeds the nominal size of the test). They find that the empirical size of a

test to remains close to the nominal size using Gaussian critical values for

G∗ greater than 25.

In practice G∗ must be estimated because it is a function of the unknown

within-cluster error covariance matrix Ω. Unfortunately, we cannot use the

residuals to estimate G∗, because use of the residuals to construct both the

critical values and the test statistic induces pre-test bias. Rather, G∗ is esti-

mated by G∗A, which is constructed under the assumption of perfect within-

cluster error correlation. (The estimation procedure for G∗A employed by

the Stata program is further discussed in the next section.) Because increas-

ing the within-cluster correlation tends to increase cluster heterogeneity, the

estimate G∗A is designed to guard against this ”worst-case scenario” in which

the errors are perfectly correlated within clusters.
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We recommend estimating G∗ as a first step in testing a model with a

clustered error structure in order to credibly rule out size distortion from

a small effective number of clusters. Application of the effective number of

clusters need not be limited to small to moderate G because a large G does

not guarantee G∗ to be large under cluster heterogeneity. CSS (2015) demon-

strate the fallibility of assuming large G∗ based on large G using the data

set clustered at the industry level from Hersch (1998). The data set contains

5960 observations in 211 clusters. Conventional wisdom suggests that the

number of clusters in this case is large enough to assume an approximately

normal distribution for the test statistic. Calculating the effective number of

clusters, however, reveals that the data set suffers from severe cluster hetero-

geneity with G∗A = 19, and the normal critical values are likely too small.

In essence, variation in the covariate matrix across clusters yields substantial

variability in the estimator of the standard error that appears in the denomi-

nator of the test statistic. Accounting for this variability enlarges the critical

values. We also note that in applications where the key question of interest

involves the response to treatment in specific clusters, the key criterion is not

the overall value of G∗A, but rather the effective number of treated clusters

(and the effective number of control clusters).

In Section 2 we detail the program. In Section 3 we follow with a deci-

sion tree for selecting the appropriate method of inference. We present an

example on use of the decision tree in Section 4.

2 Program Specification

2.1 Syntax

clusteff varlist [if ] [in] , cluster(varname) [test(varname) selection(string)

noconstant covariance(real)]
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2.2 Description

clusteff estimates the effective number of clusters (G∗) devised by Carter,

Schnepel, and Steigerwald (2015) using a vector of independent variables,

a clustering variable, and a selection vector. The program uses varlist as

a list of variables to be included in the estimation procedure with the data

clustered by the variable specified in the cluster option and the hypothesis

test of interest defined by either the selection or test option.

2.3 Options

cluster(varname) states the clustering variable and must be specified.

test(varname) specifies a selection vector if the null hypothesis of inter-

est involves a single covariate. Suppose a user aims to test the null hypothesis,

H0 : β2 = 0, using a linear model of the following form: y = β0+β1x+β2z+u.

Then,

clusteff x z, cluster(clustervar) test(z)

generates the relevant effective number of clusters.

selection(string) allows users to define their own selection vector. The

input is a vector of values selecting the coefficients to be tested corresponding

to the vector a in the null hypothesis, H0 : aTβ = 0. The order of covariates in

varlist must match the order of elements in the selection vector. This option

is especially useful if the null hypothesis of interest involves more than one

covariate. For example, if a user is testing the null, H0 : β1 + β2 = 0, stating

clusteff x z, cluster(clustervar) selection(1 1)

estimates the appropriate effective number of clusters.

The number of elements in a selection vector may not exceed the number

of variables. The number of specified elements in a selection vector, how-

ever, is allowed to be smaller than the number of variables. The program

fills empty elements with zeros such that selection(1 0) or selection(1)

generate the effective number of coefficients under the null hypothesis, H0 :
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β1 = 0.

test and selection options may not be specified simultaneously. If a

user omits both the test and selection options, the program estimates an

effective number of clusters under an assumption that the first variable in

varlist is the covariate of interest. In the above example, omitting both of the

options is equivalent to specifying test(x), selection(1), or selection(1

0).

noconstant determines whether a linear model to be tested contains a

vector of constants. If this option is specified, the program estimates an

effective number of clusters without a vector of constants. Use this option

when testing a linear model whose intercept is restricted at zero.

covariance(real) allows user to specify any real number between zero

and one as the within-cluster covariance of the error used to estimate the

effective number of clusters. If the option is left unspecified, the covariance

between error terms within a cluster defaults to one.1 The covariance of less

than one estimates a less conservative effective number of clusters relative to

the default in which perfect within-cluster error correlation is imposed.

2.4 Estimation Procedure

Generating a true value of an effective number of clusters (G∗) requires the

underlying error structure, ugu
T
g , to be known. Using residuals from a regres-

sion, ûg, to construct critical values, however, renders a test invalid (Carter,

Schnepel, and Steigerwald, 2015). Instead, CSS suggest using a 1-by-ng

vector of ones, ιg, in place of ug to impose a perfect within-cluster error

correlation as a conservative approach. clusteff uses the above estimation

procedure to generate an estimate of G∗, G∗A, as outlined below.

1The program limits the maximum covariance at 0.9999 instead of 1 due to limits on
floating value precision in MATA. This produces a more stable estimator compared to
allowing perfect correlation.
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G∗A =
G

1 + ΓA

where ΓA = 1
G

∑G
g=1(

γAg −γ̄A

γ̄A
)2

and γAg = aT (XTX)−1(XT
g ιgι

T
gXg)(X

TX)−1a.

Any valid input in selection(string) or test(string) is converted to a

selection vector, a, used to generate G∗A. The program performs a matrix

multiplication estimating a scalar value of G∗A.

3 Decision Tree

What is the correct approach for a practitioner with clustered data? As

noted above, a key quantity in determining the best method of inference is

the effective number of clusters. Thus, the decision begins with an estimate

of this quantity for a given sample. If the estimated effective number of

clusters, G∗A is at least 25, then one should use the statistic (2) with critical

values from a normal distribution. If G∗A is less than 25, then a leading

approach would be to use (2) but with critical values obtained in a different

way. Cameron, Gelbach, and Miller (2008) and MacKinnon and Webb

(2016) find that the wild bootstrap, which delivers critical values that are

larger than those from a normal distribution, brings the empirical size of the

test much closer to the nominal size.

Note, that for models where the coefficient of interest is a cluster-level

treatment, G∗A should be calculated separately for both the treated clusters

and the control clusters. If either of these measures of G∗A is less than 25,

even if the overall effective number of clusters exceeds 50, then again the wild

bootstrap could be used to obtain more accurate critical values.2

2With clusters identical to the size of U.S. states, MacKinnon and Webb (2016) show
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The wild bootstrap begins by drawing, with replacement, from the collec-

tion of cluster residual vectors {ûg}Gg=1. Each residual vector is multiplied by

either 1 or −1 with equal probability. Then, the resultant residual vectors are

combined with the observed regressors to produce bootstrap samples. Com-

plete details are provided in Cameron, Gelbach, and Miller (2008), Cameron

and Miller (2015), and MacKinnon and Webb (2016). A couple of user-

written programs, cgmwildboot by Judson Caskey and boottest by David

Roodman, can be used to generate p-values via wild bootstrap.3

For data sets that have a small effective number of clusters, either overall

or within the treatment group (while rare, a similar issue arises if the control

group has a small effective number of clusters) there are alternatives to the

wild bootstrap. If interest centers on the coefficient of a covariate that varies

within clusters, and there are a large number of observations in each cluster,

then Ibragimov and Müller (2010) propose an alternative test statistic. To

illustrate their method we first rewrite (1) to distinguish an observation-level

covariate, xig from a cluster-level covariate, zg,

yig = α + βxig + δzg + uig. (4)

The test statistic is derived by first estimating β̂g separately for each

cluster. Note that α and δ are both absorbed in the cluster level intercept

and so are not separately identified. The test statistic is

tIM =

√
G
(
β̂ − β

)
sβ̂

,

where β̂ = 1
G

∑G
g=1 β̂g and s2 = 1

G−1

∑G
g=1

(
β̂g − β̂

)2

. Under the cluster

that severe under-rejection can occur if there are fewer than 7 treated or untreated clus-
ters. Ferman and Pinto (2015) study the case of a small number of treated clusters in a
difference-in-differences setting.

3cgmwildboot can be found at https://sites.google.com/site/judsoncaskey/data and
boottest can be found at https://ideas.repec.org/c/boc/bocode/s458121.html.
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assumption, β̂g is independent of β̂h and, if ng is sufficiently large, then β̂g

has a normal asymptotic null distribution with mean β and variance σ2
g . Of

course, if β̂g is a normal random variable and σ2
g = σ2 then tIM ∼ t(G− 1).

One would think that allowing σ2
g to vary would result in a test statistic

with larger critical values than those from the student-t (G− 1). What is

surprising is that for a test with nominal size of 5 percent, the critical values

for tIM are smaller than the critical values from a student-t (G− 1). Thus

combining tIM with the critical values from a t (G− 1) yields a test whose size

will not exceed the nominal size of 5 percent. Note, such a result does not

hold for a test with a nominal size of 10 percent, so selection of a nominal size

of 5 percent is important. In comparing this method to the wild bootstrap,

Ibragimov and Müller (2016) find that tIM is better at eliminating the size

distortion for a very small number of heterogeneous clusters with large ng.

If interest centers on the coefficient of a covariate that does not vary within

clusters, and ng is large, then Donald and Lang (2007) propose an alternative

test statistic. To illustrate their method begin with the regression (4) where

the error has an error-components structure

uig = ρg + εig.

The first step is to construct the OLS fixed effects estimator from

yig = βxig + cg + εig,

yielding {ĉg}Gg=1. The second step is to construct the OLS estimator of β

from

ĉg = a+ δzg + vg,

yielding δ̂. For the H0 : δ = δ0 the test statistic is

tDL =
(δ̂ − δ0)

sδ̂
,
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where s2
δ̂

= s2∑G
i=1(zg−z)2

and s2 = 1
G−2

∑G
g=1(v̂gv̂

T
g ). The distribution of tDL is

approximately student-t (G− 2), so again the critical values are larger than

those from a normal distribution.

There are two caveats to the use of this test statistic. The first is that, as

in the case of tIM the number of observations in each cluster must be large.

The second is that, the distribution of the test statistic depends crucially

on homogeneity across clusters (in essence, ng and xg both identical across

clusters). Thus, if G∗A differs substantially from G, indicating that these

homogeneity conditions do not hold, then it may not be appropriate to use

tDL.

MacKinnon and Webb (2016) investigate the relative performance of the

wild bootstrap and tDL. For data in which each cluster has 40 observations,

but varying covariates across clusters, the wild bootstrap and tDL can have

comparable empirical size. Importantly, the comparable size requires the use

of G∗A rather than G when constructing the critical values from a student-t

distribution. In other words, if tDL is used with critical values from the

t(G− 2) distribution, then the wild bootstrap outperforms it in the sense of

more accurate size. A second set of simulations allow the cluster sizes to

vary, together with varying covariates across clusters. In these models with

more pronounced cluster heterogeneity, the wild bootstrap outperforms tDL

and delivers the most accurate size.

In Figure 1 we provide a decision tree that encapsulates this discussion.
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4 Example

We recommend using clusteff as a simple check to verify validity of analyses

and to find an optimal method to use in order to minimize both the amount

of computational power required and the size distortion. This section utilizes

an example from the economics literature to demonstrate the use of clusteff

in analysis of clustered samples.
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4.1 Clustering at the State Level

Voena (2015) studies changes in the employment decisions of married women

that result from the introduction of unilateral divorce laws. The introduction

of unilateral divorce, under which divorce can be initiated without mutual

consent of both partners, increases the probability of divorce. If women

have fewer resources in divorce than in marriage, they may need to insure

themselves against this potential loss of resources by working while married

(thereby building their human capital). As states have different rules gov-

erning the distribution of property upon divorce, the strength of this effect

is likely to vary across states. In states with “equitable distribution”, under

which women often have fewer resources after divorce, this effect is likely to

be most pronounced. In states with community property, under which each

partner gets an equal share of the resources, this effect is likely to be weaker.

Female labor market participation, therefore, is likely to be more responsive

to the divorce law reform in states with “equitable property” division.

To test the theory, a linear probability model is estimated for the labor

force participation by women in household i, in state s, and year t. Key

coefficients of interest are on the interaction covariates, which are indicators

for whether state s has unilateral divorce and (say) community property in

year t. The corresponding component of the regression model is

β1 ({unist} · {comst}) + β2 ({unist} · {eqst}) ,

where {unist} takes the value 1 if unilateral divorce is legal in state s in year

t, {comst} takes the value 1 if community property rules are used to govern

divorce, and {eqst} takes the value 1 if equitable distribution rules are used

to govern divorce. The individual hypotheses under test are H0 : βi = 0

i = 1, 2.

The conventional cluster robust t-statistic (2) is estimated, where clus-

tering is at the state level. The number of clusters is 51, corresponding to
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the 50 states and the District of Columbia. The number of observations

from each state varies widely, from 3 to 3,552. This large variation in clus-

ter size indicates substantial cluster heterogeneity. As an initial indicator,

we compute the effective number of clusters accounting only for variation

in cluster sizes (that is, ignoring how the covariates change over clusters).4

Such a calculation provides a quick indicator of the degree of cluster hetero-

geneity. For this data set, G∗A = 13, well below the cutoff for Gaussian

inference. As noted above, this approximation of G∗ is likely to be con-

servative, as it is based on an intracluster correlation of 1. An alternative

approximation, which assumes no intracluster correlation and so is much less

conservative, can be constructed by replacing the unit matrix in γAg with

the identity matrix. For this data set, this less conservative approximation

yields G∗A = 20, again below the cutoff for Gaussian inference. All initial

evidence points to the need to move away from the use of critical values from

the normal distribution.

Because the form of the conditional expectation function is not known,

Voena provides four regression approximations that differ in the number of

controls (Table 2 columns 5-8, p. 2314). In the following table we present

the OLS estimate and the cluster-robust standard error reported by Voena,

followed by the bootstrapped confidence interval in brackets and the effective

number of clusters.

4This computation corresponds to a test on the intercept.
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Table 1: Replication Results

(1) (2) (3) (4)

Variables Employed Employed Employed Employed

Uni × ComProp -0.0377* -0.0389* -0.0575** -0.0488**

(0.0164) (0.0175) (0.0175) (0.0177)

G∗A 1.9191 1.9227 4.9457 5.0394

Bootstrapped 95% C.I. [-0.0868, 0.0056] [-0.1096, 0.0073] [-0.1205, -0.0204] [-0.1181, -0.0092]

Uni × EqDistr -0.0279 -0.0263 -0.0265 -0.0298

(0.0306) (0.0314) (0.0387) (0.0414)

G∗A 4.9574 4.9630 13.3717 12.8005

Bootstrapped 95% C.I. [-0.1089, 0.0372] [-0.1018, 0.0360] [-0.1235, 0.0553] [-0.1228, 0.0541]

Year fixed effects Yes Yes Yes Yes

Age dummies Yes Yes Yes Yes

Children dummies No Yes Yes Yes

State fixed effects No No Yes Yes

Polyn yrs. married No No No Yes

Observations 44,808 44,808 44,808 39,824

Individual fixed effects 3,437 3,437 3,437 2,607

Note: Replication of columns 5-8 from Table 2 of Voena (2015). Standard errors are clustered

at the state level and critical values are generated by the wild bootstrap procedure with 1,000

replications. The third row estimates the effective number of clusters while the fourth row

presents the wild bootstrap confidence interval between 2.5 and 97.5 percentiles.

*** p<0.01, ** p<0.05, * p<0.1

For each of the null hypotheses under test, the effective number of clusters

is obtained within Stata using clusteff. For example, consider test of β1

in column 1, for which the command is:

clusteff uni_comprop uni_title uni_eqdistr comprop eqdistr d_age

>> yrd* i.person, cluster(state) test(uni_comprop)

We list all covariates included in the model in varlist, specify state as clus-

tering variable and include the null hypothesis to be tested. The program

output is:

Number of clusters: 51

Estimated effective number of clusters: 1.919089

Warning: G* estimated to be below 50.
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where the effective number of clusters corresponds to the coefficient under

test.

With such a small value for G∗A, and such substantial cluster heterogene-

ity, from the decision tree there are two potential methods of inference. The

first is to combine the standard test statistic t with critical values obtained

from the wild bootstrap. A second possibility, appropriate for regressors

that vary within states, is to use tIM with critical values from the student-

t(50) distribution. To construct tIM we must be able to estimate β1 and β2

for each state separately. Yet for some states {unist} · {comst} is always 0,

rendering β1 unidentified for these states.5 Hence we report wild bootstrap

critical values for t below the approximations of G∗ in Table 1.

We use boottest, the aforementioned user-written program for STATA,

to obtain the wild bootstrap critical values. The first line of the code runs a

regression and the second line of the code performs wild bootstrap to generate

critical values for the specified null.

regress participation uni_comprop uni_title uni_eqdistr comprop

>> eqdistr d_age* yrd* i.person chd*, cluster(state)

boottest {uni_comprop=0} {uni_eqdistr=0}

While the bootstrap procedure yields a wider confidence interval than the

conventional t critical values, the estimated coefficient remains significant.
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5 Appendix

5.1 Ibragimov and Müller

Although the test using Ibragimov and Müller test statistic is unlikely to be

valid, we show how to derive the Ibragimov and Müller test statistic, tIM ,

to demonstrate implementation of tIM using Stata. First, we define cluster

variable, clustvar, and find the number of clusters (denoted maxclustvar

here):

egen clustvar = group(state);

sort clustvar;

local maxclustvar = clustvar[_N];

As discussed in section 3, tIM is derived by calculating the coefficient of

interest individually and then assuming the derived coefficients to be approx-

imately t-distributed with G − 1 degrees of freedom. As far as the authors

are aware, there is no Stata code for Ibragimov and Müller type analysis.

It is, however, fairly simple to implement in Stata without a dedicated pro-

gram. We use a loop to calculate the coefficients individually for each group,

store the results, and calculate tIM using the dataset from Voena (2015). It

must be noted that this exercise does not have an analytical power as the

covariates of interest vary in some, but not all, clusters.6

gen bhat = .

forval i = 1(1)‘maxclustvar’ {

qui regress participation uni_comprop comprop d_age* yrd*

>> i.person if clustvar==‘i’

qui replace bhat = _b[uni_comprop] if clustvar==‘i’

}

6Only eight states had both unilateral divorce law and community property regime
in the data. As such, all states without any variation in the interaction term must be
eliminated to estimate tIM for β1.
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collapse bhat, by(clustvar)

qui sum bhat

local t_im = r(mean)/(r(sd)/sqrt(r(N)))

di "Mean of betahat is " r(mean)

di "Standard error of betahat is " r(sd)/sqrt(r(N))

"Test statistic is " ‘t_im’ " distributed t with " r(N)-1 "

>> degrees of freedom."

The above code produces the following output:

Mean of betahat is -.19478994

Standard error of betahat is .2571104

Test statistic is -.75761206 distributed t with 7 degrees of

>> freedom.
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