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1 The likelihood for small ¢

The likelihood is
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where vy = w The test statistic subtracts off the likelihood ratio under

the null which produces
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The necessary algebra here is that
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Implying that the likelihood is
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We will use our Hermite polynomial expansion on these exponential terms
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where we define 7, = [z,(8 — b)] /0.
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Presumably, 7: and § are small here so we can approximate this by the first
three terms in the sum.
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1.1 Maximizing over [

Maximizing (6) over all values of (3 is nearly the same as maximizing
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If we approximate log(1 + a) & a, then the largest term
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because U is orthogonal to column space of z; which includes the 7:. There-
fore, we need to include the quadratic term,
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This is clearly maximized at 7w = —=nd which is conveniently within the

model space so that there exists a B such that

a:tB = x¢b — omd.

1.2 Maximizing over o

Taking 7 = —7d in (6), the likelihood ratio is
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For simplicity, we will denote v = s2/02 — 1, and use Lemma 2.1
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Taking the derivative we get
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where we use ), Ho(v;) = 0. This derivative is nearly zero when v =

7(1 — )82, Therefore,
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However, this last term is actually small because EH>(7;)? = 2 so that the
leading term in the likelihood is Op(nd® 4 \/nd?).

1.2.1 Expansion in v

We would like to expand the likelihood expression from (8) out as a Taylor
expansion around vy = 0.
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The terms in this series for the powers of the second Hermite polynomial
can be simplified because > Ha(v:) =0
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These powers of the polynomial terms can be written as equivalent linear
combinations of higher order Hermite polynomials. In particular, a bit of




algebra shows that
Hy(2)? = Hy(x) + 4Ha(x) + 2

Hy(z)3 = Hg(z) + 12Hy(x) 4+ 30H(z) + 8
Hy(z)* = Hg(z) + 24Hg(x) + 156 Hy(z) + 272Hs(z) + 60

Then we will define .
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where for large n, § = Op(1). This leads to the expressions

Z Hy(0y)? = /nés + 2n
=1

ZH2(@)3 =8n+Op(Vn)

t=1
> Hy(%)* = 60n + Op(v/n)
t=1

Plugging these in
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1.3 Maximizing over §

Using a slight abuse of our notation, we will continue to use v = 7(1 — )&
Then the likelihood ratio function is
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In section 1.2.1, we have an approximation for the terms that include
the second Hermite polynomial so
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For the third Hermite polynomial
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because the 7y sum to 0. This implies that the contribution from these terms
are
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There is a term that comes from the product which is negligible
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Completing the square we can see that this is
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which has a maximum over ¢ of
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It also shows that the maximizing value of § is
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which confirms that § = Op(n~1/9).

Notice that the 0 which maximizes the likelihood depends on which 7w
we used but the maximum does not depend on the probability (with one
exception described below). The likelihood surface has a ridge along which
the gradient is 0. If we take this fixed 7 close to 0, then we can still get
this same maximizing value. This heuristically explains why we take the
continuous extension of the G(§) process for § = 0.




1.4 Symmetric Case

The previous analysis breaks down if the probability 7 is fixed at 1/2 because
then 1 — 27 = 0 and the terms with the third Hermite polynomial drop out.
In this case, we need to take a further expansion of our likelihood
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You can see that > v62Hy(0ys/6) = Op(y/nd*) which will now be the size
of the leading term in the expansion.

Calculations in Cho and White [2007] show that the likelihood is max-
imized at a § in a n~!/® neighborhood of § = 0 if the excess kurtosis term
&, is positive. They showed that the likelihood ratio at this local maximum
converges to £7/24.

If ¢4 < 0, then the maximum in this neighborhood of m = 1/2 is at § = 0,
but there will be other local maximma that are larger.

2 Hermite Polynomial Bounds

The likelihood is a function of a re-scaled Hermite polynomial.

Lemma 2.1
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The results in (15) and (16) are immediate results of direct substitution.
The interesting result follows from a Taylor expansion
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applied to the second term implies
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Lemma 2.2

Hy(z)? = Hy(z) + 4Ho(z) + 2 (18)
Hy(z)3 = Hg(x) + 12Hy(x) 4+ 30H(z) + 8 (19)
Hs(z)* = He(z) + 9Hy(2) + 18Hy(z) + 6 (20)
Hy(x)Hs(x) = Hs(x) + 6Hs(x) + 6H; () (21)

This result follows via simple algebra on the definitions of the Hermite poly-
nomials.
Combining these results from Lemma 2.2 and Lemma 2.1
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3 Approximating the Error using Residuals

The standardized residuals in the model are ¥y, and presumably these are
close to w; = uy + d+8; which are the true residuals which have a mixture-
normal distribution. This lemma says that they are close enough that the
behaviour of the Hermite polynomials is the same for each. The key as-
sumption is that the design has the typical asymptotics.

Condition 3.1 The covariates z; follow a distribution such that

1. The x; are independent of the u; and s;.

2. The impact of the residuals on the least squares estimate are asymp-
totically negligible,

[XTX]_lew: Op(n=1/2).
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These follow from standard conditions for asymptotic normality of regression
estimators and the constraint that Ed,s; = O(n~1/2).

Lemma 3.1 Under Condition 3.1, as n — oo,
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For k > 3, we have H| (x) = kHj_1(x) so that a Taylor expansion gives
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where v} is between v; and wy. We have shown that v, — w; = Op(n_1/2),
but we will derive an explicit approximation of vy — wy.
The ¥; is a normalized residual from a projection onto the column space
of the z; (call this Py)
" R I-Py)y I-Px)(u+ 95
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The estimate of the variance 62 is (conditional on the s;) a non-central

x? with n — 2 degrees of freedom and 6257 (I — Py) 5 as the non-centrality
parameter. It is well known that this can be treated as a mixture of x?’s
with at least n — 2 degrees of freedom. Thus, the marginal distribution
(integrating over s;) is also a mixture of x?’s. The non-centrality parameter
is small relative to n — 2
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where M is the number of s; = 1. The Central Limit Theorem then implies

L 4657 (M= Py) (5 +065) — 1 = Op(n112).
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We can use this to approximate the denominator with a Taylor expansion
22 =1— (2= 1)/2+ O((x — 1)?)
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Implying that there are two important components to this approximation,
an error in the estimate of ¢ and the error in the regression estimate. In
particular,

V(T — i — 63) = vn <1 ! (@ +65)" (I —Px) (i@ + 5§)> (i + 63) +
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This is our approximation of the differences between 7y and wy. To be
concrete, we will define the projection of the w; onto the column space of
the covariates as having coefficient by so that Py (@ + 05) = Xby.

We can plug this approximation into our first term of the Taylor expan-
sion in (24),

oo 51: 1 n R
Z En Z\/ﬁ(vt — wy) Hy(wy) =
k=2 t=1

n SRR
f(l_l (ﬁ+5§’)T(I—P)() (ﬁ+5§3>22;zthk(wt)+
T t=1

2 n
k=2
1/1 T . 1
—vVi|1=o (= (@+85) (1-Py) (i+65) — 1 ZEEthbng(wt)
k=2 t=1

(26)
The first factor is 4 (1 - L@+ 65)T (1—Px) (7 + 5§)) = Op(1). The
Law of Large Numbers implies that
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and by Lemma B.1, E(w;)Hy(w;) = n~/?h, (6% + k6%2),and
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Therefore, the first term in (26) is a product of these factors which also
converges to 0 in probability.
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In a similar fashion, the second term in (26) contains the factor

[1 —% (711 (it + 687 (1— Py) (i + 65) — 1)} — 0p(1).

The rest of the second factor is
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Condition 3.1 implies that the by vector are all Op(n~/?) so the first vector
has Op(1) coordinates, and the law of large numbers again
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where by Lemma B.1
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which also goes to 0.
Applying Slutsky’s Lemma to these factors and terms yields the needed

result that

Z ( ,Z\F Ut — wt)Hk 1(wt)HD0

k=3

and the second term in the sum is of smaller order. Thus proving the lemma.
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