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1 The likelihood for small δ

The likelihood is

L(β, σ, δ, π) =

n∑
t=1

log

[
1− π
σ

φ (vt) +
π

σ
φ (vt − δ)

]
(1)

where vt =
yt−xTt β

σ . The test statistic subtracts off the likelihood ratio under
the null which produces

qπ(β, σ, δ) = n log
s2

σ2
+ 2

n∑
t=1

log

[
(1− π)

φ (vt)

φ(v̂t)
+ π

φ (vt − δ)
φ(v̂t)

]
(2)

The necessary algebra here is that

v2t =
(yt − xtb+ xt(b− β))2

σ2
=
s2

σ2

(
v̂t +

xt(b− β)

s

)2

log
φ (vt)

φ(v̂t)
=
v̂2t
2

(
1− s2

σ2

)
+

(
xt(β − b)

σ

)
sv̂t
σ
− [xt(β − b)]2

2σ2

log
φ (vt − δ)
φ(v̂t)

=
v̂2t
2

(
1− s2

σ2

)
+

(
xt(β − b)

σ
+ δ

)
sv̂t
σ
− 1

2

[
xt(β − b)

σ
+ δ

]2
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Implying that the likelihood is

qπ(β, σ, δ) = n log
s2

σ2
+

n∑
t=1

v̂2t
2

(
1− s2

σ2

)
+

+ 2
n∑
t=1

log

[
(1− π) exp

[
−
(
xt(b− β)

σ

)
sv̂t
σ
− [xt(b− β)]2

2σ2

]
+

+π exp

(
−
(
xt(b− β)

σ
− δ
)
sv̂t
σ
− 1

2

[
xt(b− β)

σ
− δ
]2)]

(3)

We will use our Hermite polynomial expansion on these exponential terms

exp

[(
xt(β − b)

σ

)
sv̂t
σ
− [xt(β − b)]2

2σ2

]
=

∞∑
k=0

Hk

(
v̂t s

σ

)
τkt
k!

(4)

exp

((
xt(β − b)

σ
+ δ

)
sv̂t
σ
− 1

2

[
xt(β − b)

σ
+ δ

]2)
=
∞∑
k=0

Hk

(
v̂t s

σ

)
(τt + δ)k

k!

(5)

where we define τt = [xt(β − b)]/σ.

qπ(β, σ, δ) = n log
s2

σ2
+n

(
1− s2

σ2

)
+2

n∑
t=1

log

[ ∞∑
k=0

1

k!
Hk

(
v̂t s

σ

)(
(1− π)τkt + π(τt + δ)k

)]
.

(6)
Presumably, τt and δ are small here so we can approximate this by the first
three terms in the sum.

∞∑
k=0

1

k!
Hk

(
v̂t s

σ

)(
(1− π)τkt + π(τt + δ)k

)
= 1+

v̂t s

σ
(τt+πδ)+

1

2

(
v̂2t s

2

σ2
− 1

)(
τ2t + 2πτtδ + πδ2

)
+· · ·

1.1 Maximizing over β

Maximizing (6) over all values of β is nearly the same as maximizing

n∑
t=1

log

[
1 +

v̂t s

σ
(τt + πδ) +

1

2

(
v̂2t s

2

σ2
− 1

)(
τ2t + 2πτtδ + πδ2

)]

=
n∑
t=1

log

[
1 +

v̂t s

σ
(τt + πδ) +

1

2

(
v̂2t s

2

σ2
− 1

)(
[τt + δπ]2 + π(1− π)δ2

)]
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If we approximate log(1 + a) ≈ a, then the largest term

s

σ

n∑
t=1

v̂t(τt + πδ) = 0

because v̂t is orthogonal to column space of xt which includes the τt. There-
fore, we need to include the quadratic term,

n∑
t=1

log

[
1 +

v̂t s

σ
(τt + πδ) +

1

2

(
v̂2t s

2

σ2
− 1

)(
τ2t + 2πτtδ + πδ2

)]

=
1

2

n∑
t=1

(
v̂2t s

2

σ2
− 1

)(
[τt + δπ]2 + π(1− π)δ2

)
− s2

2σ2

n∑
t=1

v̂2t (τt+πδ)
2+o(δ2)

= −1

2

n∑
t=1

(τt + πδ)2 +
δ2π(1− π)

2

n∑
t=1

H2

(
v̂t
s

σ

)
+ o(δ2)

This is clearly maximized at τt = −πδ which is conveniently within the
model space so that there exists a β̂ such that

xtβ̂ = xtb− σπδ.

1.2 Maximizing over σ

Taking τt = −πδ in (6), the likelihood ratio is

qπ(σ, δ) = n log
s2

σ2
+ n

(
1− s2

σ2

)
+

+ 2
n∑
t=1

log

[
1 +

∞∑
k=2

π(1− π)δk

k!
Hk

(
v̂t
s

σ

)(
(1− π)k−1 − [−π]k−1

)]
. (7)

For simplicity, we will denote γ = s2/σ2 − 1, and use Lemma 2.1

H2

(
v̂t
s

σ

)
= H2(v̂t)(1 + γ) + γ

H3

(
v̂t
s

σ

)
= H3(v̂t)(1 +

3

2
γ) + 3γ v̂t +O(γ2),

Thus, the first terms in this expansion are

qπ(σ, δ) = n log(1 + γ)− nγ+

+ 2
n∑
t=1

log

[
1 +

π(1− π)δ2

2
(H2(v̂t)(1 + γ) + γ) + · · ·

]
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Taking the derivative we get

∂

∂σ
qπ(σ, δ) = − nγ

1 + γ
+π(1−π)δ2

n∑
t=1

H2(v̂t) + 1 + · · ·
1 + π(1−π)δ2

2 (H2(v̂t)(1 + γ) + γ) + · · ·

= − nγ

1 + γ
+nπ(1−π)δ2−π

2(1− π)2δ4

2

n∑
t=1

(
H2(v̂t)

2(1 + γ) +H2(v̂t)(1 + 2γ) + γ
)
+O(nδ6)

= − nγ

1 + γ
+nπ(1−π)δ2−n(1+γ)π2(1−π2)δ4

[
1

2n

n∑
t=1

H2(v̂t)
2

]
−nγπ

2(1− π)2δ4

2
+O(nδ6)

where we use
∑

tH2(v̂t) = 0. This derivative is nearly zero when γ =
π(1− π)δ2. Therefore,

qπ(σ̂, δ) = n log(1 + γ)− nγ + 2

n∑
t=1

log
[
1 +

γ

2
(H2(v̂t)(1 + γ) + γ) + · · ·

]
= −nγ

2

2
+

n∑
t=1

(
H2(v̂t)(γ + γ2) + γ2

)
− γ

2

4

n∑
t=1

(H2(v̂t)(1 + γ) + γ)2+O(nδ6)

= −nγ
2

2
+ nγ2 − nγ2(1 + γ)2

2

[
1

2n

n∑
t=1

H2(v̂t)
2

]
+O(nδ6)

=
nπ2(1− π)2δ4

2

[
1− 1

2n

n∑
t=1

H2(v̂t)
2

]
+O(nδ6) (8)

However, this last term is actually small because EH2(v̂t)
2 = 2 so that the

leading term in the likelihood is OP (nδ6 +
√
nδ4).

1.2.1 Expansion in γ

We would like to expand the likelihood expression from (8) out as a Taylor
expansion around γ = 0.

n log(1 + γ)− nγ + 2
n∑
t=1

log
[
1 +

γ

2
(H2(v̂t)(1 + γ) + γ)

]
= −nγ

2

2
+
nγ3

3
−nγ

4

4
+

n∑
t=1

[
γ (H2(v̂t)(1 + γ) + γ)− γ2

4
(H2(v̂t)(1 + γ) + γ)2 +

+
γ3

12
(H2(v̂t)(1 + γ) + γ)3 − γ4

32
(H2(v̂t)(1 + γ) + γ)4

]
+OP (nγ5) (9)
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The terms in this series for the powers of the second Hermite polynomial
can be simplified because

∑
H2(v̂t) = 0

n∑
t=1

γ (H2(v̂t)(1 + γ) + γ) = nγ2

γ2

4

n∑
t=1

(H2(v̂t)(1 + γ) + γ)2 =
γ2

4

n∑
t=1

(
H2(v̂t)

2(1 + γ)2 + 2γ(1 + γ)H2(v̂t) + γ2
)

=
γ2 + 2γ3 + γ4

4

[
n∑
t=1

H2(v̂t)
2

]
+
nγ4

4

Then

γ3

12

n∑
t=1

(H2(v̂t)(1 + γ) + γ)3 =
γ3

12

[∑
t

H2(v̂t)
3

]
+
γ4

4

n∑
t=1

[
H2(v̂t)

3 +H2(v̂t)
2
]

+OP (nγ5)

γ4

32

n∑
t=1

(H2(v̂t)(1 + γ) + γ)4 =
γ4

32

n∑
t=1

[
H2(v̂t)

4
]

+OP (nγ5)

Thus,

n log(1 + γ)− nγ + 2
n∑
t=1

log
[
1 +

γ

2
(H2(v̂t)(1 + γ) + γ)

]
= −nγ

2

2
+ nγ2 − γ2 + 2γ3 + γ4

4

[
n∑
t=1

H2(v̂t)
2

]
− nγ4

4
+

+
nγ3

3
+
γ3

12

[∑
t

H2(v̂t)
3

]
+
γ4

4

n∑
t=1

[
H2(v̂t)

3 +H2(v̂t)
2
]

+

− nγ4

4
− γ4

32

n∑
t=1

[
H2(v̂t)

4
]

+OP (nγ5)

=
nγ2

2

(
1− 1

2n

[
n∑
t=1

H2(v̂t)
2

])
+
nγ3

3

(
1− 3

2n

n∑
t=1

H2(v̂t)
2 +

1

4n

n∑
t=1

H2(v̂t)
3

)
+

− nγ4

2

(
1− 1

2n

n∑
t=1

H2(v̂t)
3 +

1

16n

n∑
t=1

H2(v̂t)
4

)
+OP (nγ5) (10)

These powers of the polynomial terms can be written as equivalent linear
combinations of higher order Hermite polynomials. In particular, a bit of
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algebra shows that

H2(x)2 = H4(x) + 4H2(x) + 2

H2(x)3 = H6(x) + 12H4(x) + 30H2(x) + 8

H2(x)4 = H8(x) + 24H6(x) + 156H4(x) + 272H2(x) + 60

Then we will define

ξk =
1√
n

n∑
t=1

Hk(v̂t)

where for large n, ξk = OP (1). This leads to the expressions

n∑
t=1

H2(v̂t)
2 =
√
nξ4 + 2n

n∑
t=1

H2(v̂t)
3 = 8n+OP (

√
n)

n∑
t=1

H2(v̂t)
4 = 60n+OP (

√
n)

Plugging these in

n log(1 + γ)− nγ + 2
n∑
t=1

log
[
1 +

γ

2
(H2(v̂t)(1 + γ) + γ)

]
= −
√
nγ2

4
ξ4 −

3nγ4

8
+OP (nγ5) +OP (

√
nγ3). (11)

1.3 Maximizing over δ

Using a slight abuse of our notation, we will continue to use γ = π(1−π)δ2.
Then the likelihood ratio function is

qπ(β̂, σ̂, δ) = n log(1+γ)−nγ+2
n∑
t=1

log

[
1 +

γ

2
H2(v̂ts/σ̂) +

(1− 2π)γδ

6
H3(v̂ts/σ̂) +O(δ4)

]
In section 1.2.1, we have an approximation for the terms that include

the second Hermite polynomial so

qπ(β̂, σ̂, δ) = OP (nδ6)+OP (
√
nδ4)+

(1− 2π)γδ

3

n∑
t=1

H3(v̂ts/σ̂)−(1− 2π)2γ2δ2

36
H3(v̂ts/σ̂)

6



For the third Hermite polynomial

n∑
t=1

H3(v̂ts/σ) =
√
n

(
1 +

3γ

2

)[
1√
n

n∑
t=1

H3(v̂t)

]
+OP (

√
nγ2)

because the v̂t sum to 0. This implies that the contribution from these terms
are

n∑
t=1

(
(1− 2π)γδ

3
H3(v̂ts/σ̂)− (1− 2π)2γ2δ2

36
H3(v̂ts/σ̂)2

)
=

√
n(1− 2π)γδ

3
ξ3 −

n(1− 2π)2

6
γ2δ2 +OP (nδ8 +

√
nδ5) (12)

There is a term that comes from the product which is negligible

n∑
t=1

(1− 2π)γ2δ

9
H2(v̂ts/σ̂)H3(v̂ts/σ̂) = OP (

√
nδ5)

Therefore,

qπ(β̂, σ̂, δ) =

√
n(1− 2π)γδ

3
ξ3 −

n(1− 2π)2

6
γ2δ2 +OP (nδ8 +

√
nδ4) (13)

Completing the square we can see that this is

qπ(β̂, σ̂, δ) = −1

6

(√
n(1− 2π)γδ − ξ3

)2
+
ξ23
6

+OP (nδ8 +
√
nδ4) (14)

which has a maximum over δ of

qπ(β̂, σ̂, δ̂) =
ξ23
6

+ oP (n−1/3).

It also shows that the maximizing value of δ is
√
n(1− 2π)γδ̂ = ξ3

=⇒ δ̂3 = n−1/2
(

ξ3
π(1− π)(1− 2π)

)
which confirms that δ̂ = OP (n−1/6).

Notice that the δ which maximizes the likelihood depends on which π
we used but the maximum does not depend on the probability (with one
exception described below). The likelihood surface has a ridge along which
the gradient is 0. If we take this fixed π close to 0, then we can still get
this same maximizing value. This heuristically explains why we take the
continuous extension of the G(δ) process for δ = 0.
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1.4 Symmetric Case

The previous analysis breaks down if the probability π is fixed at 1/2 because
then 1− 2π = 0 and the terms with the third Hermite polynomial drop out.
In this case, we need to take a further expansion of our likelihood

qπ(β̂, σ̂, δ) = n log(1 + γ)− nγ+

+ 2
n∑
t=1

log

[
1 +

γ

2
H2(v̂ts/σ̂) +

(1− 3π + 3π2)γδ2

24
H4(v̂ts/σ̂) +O(δ5)

]
You can see that

∑
γδ2H4(v̂ts/σ̂) = OP (

√
nδ4) which will now be the size

of the leading term in the expansion.
Calculations in Cho and White [2007] show that the likelihood is max-

imized at a δ in a n−1/8 neighborhood of δ = 0 if the excess kurtosis term
ξ4 is positive. They showed that the likelihood ratio at this local maximum
converges to ξ24/24.

If ξ4 < 0, then the maximum in this neighborhood of π = 1/2 is at δ = 0,
but there will be other local maximma that are larger.

2 Hermite Polynomial Bounds

The likelihood is a function of a re-scaled Hermite polynomial.

Lemma 2.1

H1(v̂t(1 + γ)1/2) = H1(v̂t)(1 + γ/2) +OP (γ2) (15)

H2(v̂t(1 + γ)1/2) = H2(v̂t)(1 + γ) + γ (16)

Hk(v̂t(1 + γ)1/2) = Hk(v̂t)

(
1 +

kγ

2

)
+
k(k − 1)γ

2
Hk−2(v̂t) +O(γ2) (17)

The results in (15) and (16) are immediate results of direct substitution.
The interesting result follows from a Taylor expansion

H ′k(x) = kHk−1(x)

so that

Hk(v̂t(1 + γ)1/2) = Hk(v̂t) +
kγv̂t

2
Hk−1(v̂t) +O(γ2).

Then the standard result

xHk(x) = Hk+1(x) + kHk−1(x)

8



applied to the second term implies

Hk(v̂t(1 + γ)1/2) = Hk(v̂t)

(
1 +

kγ

2

)
+
γk(k − 1)

2
Hk−2(v̂t) +O(γ2).

Lemma 2.2

H2(x)2 = H4(x) + 4H2(x) + 2 (18)

H2(x)3 = H6(x) + 12H4(x) + 30H2(x) + 8 (19)

H3(x)2 = H6(x) + 9H4(x) + 18H2(x) + 6 (20)

H2(x)H3(x) = H5(x) + 6H3(x) + 6H1(x) (21)

This result follows via simple algebra on the definitions of the Hermite poly-
nomials.

Combining these results from Lemma 2.2 and Lemma 2.1

H2(v̂t(1 + γ)1/2)2 = H4(v̂t(1 + γ)1/2) + 4H2(v̂t(1 + γ)1/2) + 2

= H4(v̂t)(1 + 2γ) + 6γH2(v̂t) + 4H2(v̂t)(1 + γ) + 4γ + 2 +O(γ2)
(22)

For H3,

H3(v̂t(1 + γ)1/2)2 = H6(v̂t(1 + γ)1/2) + 9H4(v̂t(1 + γ)1/2) + 18H2(v̂t(1 + γ)1/2) + 6

= H6(v̂t)(1 + 3γ/2) +H4(v̂t)(9 + 33γ)+

+H2(v̂t)(18 + 72γ) + 18γ + 6 +O(γ2) (23)

3 Approximating the Error using Residuals

The standardized residuals in the model are v̂t, and presumably these are
close to wt = ut + δ∗st which are the true residuals which have a mixture-
normal distribution. This lemma says that they are close enough that the
behaviour of the Hermite polynomials is the same for each. The key as-
sumption is that the design has the typical asymptotics.

Condition 3.1 The covariates xt follow a distribution such that

1. The xt are independent of the ut and st.

2. The impact of the residuals on the least squares estimate are asymp-
totically negligible, [

XTX
]−1

XT ~w = OP (n−1/2).

9



These follow from standard conditions for asymptotic normality of regression
estimators and the constraint that Eδ∗st = O(n−1/2).

Lemma 3.1 Under Condition 3.1, as n→∞,

∞∑
k=3

δk−1

k!

[
1√
n

n∑
t=1

(Hk(v̂t)−Hk(wt))

]
P→ 0.

For k ≥ 3, we have H ′k(x) = kHk−1(x) so that a Taylor expansion gives

∞∑
k=3

δk−1

k!

1√
n

n∑
t=1

(Hk(v̂t)−Hk(wt)) =
∞∑
k=3

δk−1

n(k − 1)!

n∑
t=1

√
n (v̂t − wt)Hk−1(wt)+

+
∞∑
k=3

δk−1

n(k − 2)!

n∑
t=1

√
n (v̂t − wt)2Hk−2(v

∗
t ) (24)

where v∗t is between v̂t and wt. We have shown that v̂t − wt = OP (n−1/2),
but we will derive an explicit approximation of v̂t − wt.

The v̂t is a normalized residual from a projection onto the column space
of the xt (call this PX)

(v̂t)
n
t=1 = ~v =

(I−PX) ~y√
1
n~y

T (I−PX) ~y
=

(I−PX) (~u+ δ~s)√
1
n (~u+ δ~s)T (I−PX) (~u+ δ~s)

The estimate of the variance σ̂2 is (conditional on the st) a non-central
χ2 with n − 2 degrees of freedom and δ2~sT (I−PX)~s as the non-centrality
parameter. It is well known that this can be treated as a mixture of χ2’s
with at least n − 2 degrees of freedom. Thus, the marginal distribution
(integrating over st) is also a mixture of χ2’s. The non-centrality parameter
is small relative to n− 2

E
1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s) ≤ n− 2

n
+
δ2

n
EM = 1 +

hδ√
n
− 2

n
.

where M is the number of st = 1. The Central Limit Theorem then implies

1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s)− 1 = OP (n−1/2).

We can use this to approximate the denominator with a Taylor expansion
x−1/2 = 1− (x− 1)/2 +O((x− 1)2)

~v = (I−PX) (~u+ δ~s)

[
1− 1

2

(
1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s)− 1

)
+OP (n−1)

]
10



Implying that there are two important components to this approximation,
an error in the estimate of σ and the error in the regression estimate. In
particular,

√
n(~v − ~u− δ~s) =

√
n

2

(
1− 1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s)

)
(~u+ δ~s) +

−
√
nPX (~u+ δ~s)

[
1− 1

2

(
1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s)− 1

)]
+OP (n−1/2)

(25)

This is our approximation of the differences between v̂t and wt. To be
concrete, we will define the projection of the wt onto the column space of
the covariates as having coefficient b0 so that PX (~u+ δ~s) = Xb0.

We can plug this approximation into our first term of the Taylor expan-
sion in (24),

∞∑
k=2

δk

k!

1

n

n∑
t=1

√
n (v̂t − wt)Hk(wt) =

√
n

2

(
1− 1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s)

) ∞∑
k=2

δk

k!

1

n

n∑
t=1

wtHk(wt)+

−
√
n

[
1− 1

2

(
1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s)− 1

)] ∞∑
k=2

δk

k!

1

n

n∑
t=1

xTt b0Hk (wt)

(26)

The first factor is
√
n
2

(
1− 1

n (~u+ δ~s)T (I−PX) (~u+ δ~s)
)

= OP (1). The

Law of Large Numbers implies that

∞∑
k=2

δk

k!

1

n

n∑
t=1

wtHk(wt)
P→
∞∑
k=2

δk

k!
E(wt)Hk(wt), (27)

and by Lemma B.1, E(wt)Hk(wt) = n−1/2h∗
(
δk∗ + kδk−2∗

)
,and

∞∑
k=2

δk

k!
E(wt)Hk(wt) =

h√
n

(
eδδ∗ − 1− δδ∗ + δ/δ∗

[
eδδ∗ − 1

])
→ 0.

Therefore, the first term in (26) is a product of these factors which also
converges to 0 in probability.
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In a similar fashion, the second term in (26) contains the factor[
1− 1

2

(
1

n
(~u+ δ~s)T (I−PX) (~u+ δ~s)− 1

)]
= OP (1).

The rest of the second factor is

√
n

∞∑
k=2

δk

k!

1

n

n∑
t=1

xTt b0Hk (wt) =
√
nbT0

∞∑
k=2

δk

k!

1

n

n∑
t=1

xTt Hk (wt)

Condition 3.1 implies that the b0 vector are all OP (n−1/2) so the first vector
has OP (1) coordinates, and the law of large numbers again

1

n

n∑
t=1

xtHk(wt)
P→ ExtEHk(wt)

where by Lemma B.1

∞∑
k=2

δk

k!
EHk(wt) =

∞∑
k=2

h(δδk∗ )

δ∗
√
nk!

= n−1/2h
(
eδδ∗ − 1− δδ∗

)
/δ∗

which also goes to 0.
Applying Slutsky’s Lemma to these factors and terms yields the needed

result that
∞∑
k=3

δk−1

n(k − 1)!

n∑
t=1

√
n (v̂t − wt)Hk−1(wt)

P→ 0.

and the second term in the sum is of smaller order. Thus proving the lemma.
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