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Specification tests for conditional heteroskedasticity that are derived under the 
assumption that the density of the innovation is Gaussian may not be powerful in 
light of the recent empirical results that the density is not Gaussian. We obtain 
specification tests for conditional heteroskedasticity under the assumption that 
the innovation density is a member of a general family of densities. Our test 
statistics maximize asymptotic local power and weighted average power criteria 
for the general family of densities. We establish both first-order and second-order 
theory for our procedures. Simulations indicate that asymptotic power gains are 
achievable in finite samples. 

Volatility clustering is an important characteristic of financial time series. To 
account for volatility clustering, which is a term for serial correlation in the second 
moment of a series, researchers often estimate variants of the autoregressive con- 
ditional heteroskedasticity (ARCH) model developed by Engle (1982). Successful 
application of these models requires correct specification of both the conditional 
mean and the conditional variance. Our interest here is in developing powerful 
statistics for testing the specification of the conditional variance. 

Copyright 63 2000 by Marcel Dekker, Inc. 
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146 LZNTON AND STEIGERWALD 

Much is known about the behavior of test statistics for the conditional variance 
that are constructed from a Gaussian likelihood.' Recent empirical work questions 
the assumption that the likelihood is Gaussian.* If the likelihood is not Gaussian, 
then test statistics based on a Gaussian likelihood are not asymptotically the 
most powerful test statistics. To improve power, one could use non-Gaussian test 
statistics. If the innovation density is correctly specified, then non-Gaussian test 
statistics are asymptotically most powerful. If, however, the innovation density is 
not correctly specified, then non-Gaussian test statistics are not asymptotically 
most powerful and may not be ~onsis tent .~  

We develop test statistics for the conditional variance that do not suffer from 
a loss of power if the likelihood is not Gaussian. Our test statistics are semipara- 
metric, that is we specify the first two conditional moments parametrically but 
assume only that the innovation density is a member of a nonparametric family. 
We show that the semiparametric test statistics are adaptzve in the sense that 
they are asymptotically equivalent to test statistics constructed from the true 
likelihood. As a result, the semiparametric test statistics inherit the asymptotic 
properties of the correctly specified likelihood-based test statistics. 

Our result may seem surprising when contrasted with previous results for es- 
timation of conditional heteroskedasticity models. Linton (1993) and Steigerwald 
(1993) show that the conditional variance parameters cannot be estimated adap- 
tively because of a lack of identification of the scale of the innovation density. 
Because the test statistics we construct do not depend on the scale of the inno- 
vation density, but only on the relative scale parameters that can be estimated 
adaptively, the test statistics are not affected by the problem of estimating the 
scale parameter. 

Because the conditional variance must be positive, many of the specification 
tests we consider naturally have one-sided alternative hypotheses. For such tests 
we follow a proposal in Lee and King (1993) to construct test statistics that 
are more powerful than statistics designed for two-sided alternative hypotheses. 
Specifically, we show that for a test of one additional parameter in the conditional 
variance function, the positive square-root of a semiparametric Lagrange multi- 
plier (LM) test statistic is consistent and maximizes asymptotic power uniformly 

- - 

'Engle (1983) shows that if the true innovation density is Gaussian, then the Lagrange 
multiplier test statistic is asymptotically distributed as a Chi-square random variable. Bollerslev 
and Wooldridge (1992) show tha.t the asyn~ptotic result continues to  hold even if the true 
innovation density is not Gaussian. 

2Evidence that standardized errors from a CH model of asset prices do not have a Gaussian 
density is provided by a number of authors. For example, Baillie and Bollerslev (1989) use 
both an exponential power and a t density to model exchange rates, Hsieh (1989) uses several 
mixture densities to model exchange rates, and Nelson (1991) uses an exponential-power density 
to model stock prices. 

"esults in Newey and Steigerwald (1997) imply that non-Gaussian likelihood based test 
statistics are not generally robust to misspecification of the innovation density. 
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ADAPTIVE TESTING IN ARCH MODELS 147 

against local alternatives.' For a test of more than one additional parameter in 
the conditional variance function, we show that a semiparametric sum of scores 
test statistic is consistent and maximizes asymptotic power against appropriately 
defined local alternatives. 

Our semiparametric test statistics are constructed from a nonparametric es- 
timator of the innovation density. The use of a nonparametric density estimator 
may result in the small sample properties differing markedly from the predicted 
first-order asymptotic theory. To determine the small sample properties of our 
semiparametric test statistic, we also derive second-order asymptotic theory. The 
second-order results allow us to determine a value of the smoothing parameter 
that improves the performance of semiparametric test statistics. Because it is 
difficult to obtain second-order asymptotic results under the weak regularity con- 
ditions we use for our first-order asymptotic results, we strengthen the regularity 
conditions for the second-order results. Thus the semiparametric test statistics 
that we study are asymptotically optimal (to first order) for a very broad class of 
densities and are asymptotically optimal (to second order) for a smaller class of 
densities. 

We also examine the small sample properties of our test statistics through 
simulation. We find that for a test of more than one additional parameter in the 
conditional variance equation, the semiparametric test statistic has power gains 
for samples of only 100 observations. 

Let zt = (yt, xi)', t = 1 , .  . . , T, be the observed data, where the dependent 
variable yt is a scalar, while xt is a k by 1 vector of regressors. We consider ARCH 
models of the form 

Y t  = P'xt + ht ( - / )w,  

where ht (7) is a function of the set of past information 3t-l = {xt , zt-1. zt-2, . . .) 
and a vector y of parameters of interest, ut is a period-t i.i.d. innovation with 
scale parameter cr and is independent of 3t't_l. Our parameterization is slightly 
different from Engle's original parameterization. In Engle's parameterization, ut 
is assumed to be a Gaussian random variable with variance 1, so that cr = 1 and 
all the parameters of the conditional variance are identified. Because we allow the 
density of ut to be a member of a general family of densities, we are only able to 
identify the parameters of the conditional variance up to scale. For example, in 
the ARCH(p) model 

4 ~ e r a  and Ng (1991) also construct test statistics based on nonparametrlc est~rnates of the 
score funct~on, although thelr test s t a t ~ s t ~ c s  are based on a two-s~ded alternative and so do not 
maxlmlze power 
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148 LINTON AND STEIGERWALD 

where the parameters in (I, are the relative scale parameters of the conditional 
variance of y t ,  that is 4 consists of ratios of each of the slope parameters to the 
constant paramet'er in the conditional variance. If the conditional variance is 
bo + Cy=l bi(yt-i - pTxt-i)', then 4i = S, /So .  

We consider a test for additional parameters in the conditional variance of an 
ARCH model; that is, a test of t'he null hypothesis that the model is ARCH(p-m), 
with m 2 1: 

- Ho : (bp-m+l - . . . = (bp = 0, 

against the one-sided alternative hypothesis that the model is ARCH(p): 

HA : &m+i 2 0 ,  i = 1, . . . , m with at least one strict inequality. 

While the alternative hypothesis we study is an ARCH model, the test has 
power against generalized ARCH (GARCH) models."~ pointed out in Lee 
and King (1993) the LM statistic for testing a null of homoskedasticity against 
ARCH(p) or against GARCH(p, q) is the same because the score for the subset 
of the q additional conditional variance parameters equals zero under the null 
hypothesis. To carry out tests for a model in which the conditional variance 
is GARCH(p, q), we construct the asymptotically optimal test statistics for an 
ARCH(p) alternative with the residuals from the estimated GARCH(p, q) model. 

3. LIKELIHOOD AND TEST STATISTICS 

If the Lebesgue density g(.) of ut is known, then optimal inference about the 
parameters B = (PI,  a ,  7')' is based on the sample log-likelihood 

T T T 

where ut = a-lh;l(y)[yt  - P f x t ] ,  and L t ( B , g )  is t'he period-t conditional log- 
likelihood of yt given (The period-0 observation is considered fixed.) Define 
the Fisher scores for location and scale of the innovation density as $,(u) = 

-g ( l ) (u ) /g (u)  and $'(u) = -[1 - U $ ~ ( U ) ] ,  where g( i ) (u)  is the ith derivative of g 
with respect to u. Let 

$1 (ut(W 
i (u t (Q))  = ( $' (ut ( B ) )  ) 

where d(u,(Bo)) is mean zero and independent of .Ft-,. 
Of central interest are the parameters 4, while x = ( a ,  P')' are nuisance para- 

met,ers. The efficient score s:(@, g )  and efficient information J& (see Bickel et (11. 

(1994) for a discussion of the efficient score) are 

'Nelson and Cao (1991) show that t,he alternative space for a GARCH model is not one-sided 
arid instead has a very complicated structure; rendering it difficult to obtain asynlptotically 
optimal t&s. 
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ADAPTIVE TESTING IN ARCH MODELS 

where dl,* Id$ = dlt Id$ - J&7X;11dlt / a x .  The efficient scores for the relative- 
scale coefficients $ are orthogonal to the tangent space of scores for g in the 
semiparametric model, thus the situation is in principle adaptive (for estimation 
and hence for testing) for 4, see Linton (1993) and Steigerwald (1993). The 
period-t component of the efficient score is 

where I'&(O, g ) ,  which is calculated from expressions contained in the appendix, 
depends only on Ft-l.  If g  is symmetric about zero, then J4p = 0 and the period-t 
component of the efficient score is 

Let 5 be the maximum likelihood estimator (MLE) of 0 imposing the null 
restrictions, or any asymptotically equivalent estimator, and let for any p by 1 
vector c: 

A 

where j$8(8, g )  is a consistent estimator of &?BB(O, y) and J& is the corresponding 
element of the efficient information estimator. A parametric sum of scores test 
statistic for Ho versus H A  is r ,  where the first p - m elements of c equal 0 and the 
last m elements of c equal 1. If y is Gaussian these test statistics are particularly 
simple and ha1.e been extensively studied, see especially Lee and King (1993), 
Bera and Higgins (1993), Engle (1983), and Bollerslev and Wooldridge (1992). 
As we show in Section 4, r, is asymptotically standard Gaussian. 

The semiparametric versions of our test statistics are also based on estimating 
(0.1).7 We replace population moments by their sample equivalents and g(u) by 
a nonpara~netric kernel density estimator 

'If uut is a Gaussian random variable, then I la  = 0, while q l ( u )  = -u and y2(u) = - [u2  - I]. 

'We do not estimate location and scale because these parameters are not jointly identified 
with the innovation density g. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
7
:
0
5
 
1
6
 
J
u
n
e
 
2
0
1
1



150 LINTON AND STEIGERWALD 

where K (.) is a kernel function and h(T) is a bandwidth parameter both satis- 
fying conditions A9 given in the appendix.8 The index set ?;: is taken here to be 
{s : s # t ) .  Here, ii, are standardized residuals from a preliminary T1I2 consistent 
procedure, for example the Gaussian MLE zG. Because the kernel is unbounded, 
we introduce the trimming rule 

where n , ~ ,  e~ + oo; dT -+ 0 are trimming constants that obey Assumption A8 
in the appendix. We estimate gl (u) and g2(u)  by ql (u)  = -$l)(u)/T(u) and 

A 

G2(u) = -[1 - U $ ~ ( U ) ] ,  the efficient score by 

and the efficient information by 

where I(?) = TT-' zLl $(iit)G(Zlt)'F. The semiparametric test statistic is 

,. - A - 
where B = QG - J & ~ ( Q ~ ~ ) T - ~ / ~ S O ( ~ ,  6 )  is the semiparametric estimator of 9. As 
we show in Section 4, ic is also asymptotically standard Gaussian. 

We derive the limit distributions for parametric test statistics and prove that 
the semiparametric test statistics defined in Section 3 are asymptotically equiva- 
lent to the parametric test statistics and so are adaptive. To allow for a meaning- 
ful asymptotic power comparison among test statistics, we consider a sequence of 
local alternatives 

BT = QO + 6 ~ - ~ ~ ~  for any 6 E R ~ + ~ + ' ,  (0.4) 

where 90 is the true value of 6 and S = (Sp, Sa, 6?). We are primarily interested 
in the case that 6p, 6, = 0 but 6, # 0.  To derive limit distributions we establish 

'Engle and Gonzalez-Rivera (1991) also study a semiparametric estimator for the parameters 
of a GARCH model. 
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ADAPTIVE TESTING IN ARCH MODELS 151 

(in the appendix) that a parametric ARCH model is regular in the sense that its 
likelihood ratio has the local asymptotically normal (LAN) property. We are able 
to relax the symmetry assumption that is typically used to establish LAN, which 
may be important to applications of our theory as many financial time series are 
characterized by asymmetry. Our general approach is to be found in a number of 
other papers, notably Linton (1993)' Steigerwald (1993)' and Jeganathan (1995), 
Silvapulle, Silvapulle, and Basawa (1997), and Gonzalez-Rivera and Ullah (1998). 

An immediate consequence of the LAN property is "Le Cam's Third Lemma" 
(see Bickel et al. (1994, page 503))' which delivers the asymptotic distribution of 
scalar test statistics 7, under a sequence of local alternatives. Let AT = L(&, g) - 
L(Bo, g) be the log-likelihood ratio and let ( 7 0 ,  A,) be a bivariate Gaussian random 

variable with mean (p ,  +$) and covariance matrix [ :, 1 .  Under the lemma, 

if 

(7,' AT) * ( 7 0 ,  Ao), under 80, (0.5) 

then 

The first result contains the limit distribution of the parametric test statistic 
under the sequence of local alternatives, from which one can calculate its local 
power, and shows that the semiparametric test statistic is asymptotically equiva- 
lent to the parametric test statistic. Let J44 be the inverse of J&. 

THE ORE^^ 1. Suppose that the Assumptions A1 through A7 given in the ap- 
pendix are satisfied. Then, for r, from (O.l), we have 

sup lPr(r, 5 x) - @ [x - p(c)] l  = o( l ) ,  
-m<x<m 

(0.6) 

under BT, where p(c) = g)~)1/26TJ44 (00, g ) ~ .  If, in addition, Assump- 
tion A 8  holds, then 

A 

rc - rc = op(l) ,  under QT. (0.7) 

PROOF. Convergence of r, to a N(0. I ) ,  under Qo. and the joint convergence 
(0.5), which follow by arguments similar to those contained in Linton (1993, The- 
orem 3), together imply (0.6). 

For (0.7) it suffices to establish that s;(BT, F) --s;(BT, g) = op(l)  and ?;$(QT, 5) - 
&(or, g) = o,(l), where BT is the deterministic sequence defined in (0.4). These 
results follow by arguments similar to those used in Linton (1993). m 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
7
:
0
5
 
1
6
 
J
u
n
e
 
2
0
1
1



152 LINTON AND STEIGERWALD 

REMARK. Gonzalez-Rivera (1997) calculates p ( c )  for a number of densities. 
See Silvapulle, Silvapulle, and Basawa (1997, Theorem 2.3) for a similar result in 
an i.i.d. setting. 

We next define our optimality criteria and show that r,  and 7, are asymptot- 
ically optimal. The critical function of r is 

where K,, with a E (0, I ) ,  is a critical value, in our case determined by (0.6). Let 
ET,6 denote expectation taken with respect to the measure PTlsT of the sequence 
of local alternatives. Let A0 and AA be the set of S values consistent with the null 
and alternative hypotheses respectively. In our case, A. = (0) and AA = R\ for 
some 1 2 1. 

DEFINITION. A test statistic T is asymptotically unbiased if 

lim sup ET,6pa(r) 5 a, for a11 6 E Ao, and 
T-m 

lim inf ET,6$o,(~) >_ a ,  for a11 S E AA. 
T+m 

A test statistic r is maximin if it is asymptotically unbiased and if for any other 
asymptotically unbiased statistic r* , we have 

for any E > 0. 

For the case in which m = 1 we have 

THEOREM 2. If m = 1, then the test statistics r, and 7, are asymptotically 
maximin.  

PR.OOF. Follows from Strasser (1985), Theorem 82.21. 

This result is the equivalent of the Locally Asymptotic Minimax result for esti- 
mation, see Hajek (1972). Theorem 2 implies that, excluding superefficient test 
statistics, local power is maximized by r,. 

Theorem 2 does not apply to the case of m > 1, because the alternative region 
is a proper directed subset of the full Euclidean space. In this case we consider 
an alternative optimality criterion. Let w(B)  be a measure that gives probability 
one to  the set of possible values for 0 under the alternative hypothesis, and let r 
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ADAPTIVE TESTING IN ARCH MODELS 153 

be a level a test with power function ~ ~ ( 6 ) .  Define the weighted average power 
criterion 

We say that r is Q-optimal if it maximizes Q (possibly in an asymptotic sense). 
Following Sengupta and Vermeire (1986) we use a weight function that is uniform 
over arbitrarily small (local) neighborhoods.g 

DEFINITION. A level a test r is locally most  mean powerful unbiased (LMMPU) 
if it is asymptotically unbiased and if for any other asymptotically unbiased level 
a test r*, there exists qo > 0 such that 

This corresponds to a locally best (i.e. maximin) in the direction 4, = . . . = 4,. 
Lee and King (1993) show that the LMMPU test for the case in which m > 1 and 
ut is Gaussian is based on the sum of scores, which accords with our construction 
of -i,. We have 

THEOREM 3. If m > 1, then the test statistics r, and 7, are asymptotically 
LMMPU. 

PROOF: This follows directly from the definition of an LMMPU test given by 
King and Wu (1991), and Theorem 1. 

REMARK: Although standard likelihood-based test statistics, such as the La- 
grange multiplier, likelihood ratio, and Wald, maximize asymptotic power against 
t w ~ s i d e d  local alternatives, they do not maximize asymptotic power against one- 
sided local alternatives. Further, the standard likelihood-based test statistics 
cannot be modified simply to take account of the one-sided alternative, HA,  if 
m > 1. 

5. SECOND-ORDER ASYMPTOTIC PROPERTIES 
5.1 Size Distortion 

Theorems 1, 2 and 3 guarantee that .i, is asymptotically optimal. Of course, 
these results may hold only for very large sample sizes. To provide more insight 

'Andrews (1994) uses a multivariate truncated normal distribution function for w that  is 
indexed by c, where c scales the covariance matrix of the weight function. 
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154 LINTON AND STEIGERWALD 

into the finite sample behavior of .ic, we derive an asymptotic expansion of 5, that 
contains an error of smaller order than the error in (0.7), which is known only 
to be o(1). The expansion is a second-order expansion, because the additional 
terms that are included are asymptotically negligible with respect to 7, - rc and 
thus do not show up in the limiting distribution. In parametric problems, the 
correction terms are of order T-'j2 in probability, see Rothenberg (1984), while 
in this semiparametric context, the correction terms are of order strictly larger 
than T-'" in probability. Furthermore, the precise magnitude of the second-order 
terms depends on the bandwidth. 

hlathematical derivation of the second-order term for .ic is demanding in the 
general framework under which the first-order theory is derived. Specifically, it 
is quite difficult to derive the expansion if g(.)  is asymmetric and if trimming 
parameters are used to construct g( . ) .  To overcome these difficulties, we derive 
the second-order term under the assumption that g( . )  is symmetric about zero and 
that g(.) has finite support and is bounded away from zero everywhere on that 
support, which obviates the need to trim g ( . ) .  If the additional assumptions hold 
the modified test statistic is second-order optimal, if the additional assumptions 
do not hold the modified test statistic is first-order optimal. To determine how 
the modified test statistic performs in finite samples if the additional assumptions 
do not hold. we perform simulations. 

If g ( . )  is symmetric about zero, then the semiparametric test statistic is 

nience, we use a leave-p-out kernel density estimator, so that the index set in 
(0.2) is 3 = { s :  s # t . . . . .  t - p ) .  

The second-order expansion (full derivation is contained in the appendix) is 

where the random variables Al and A:! have zero mean and are uncorrelated with 
7,. The optimal bandwidth rate, in terms of minimizing the order of magnitude 
of the correction term C, balances the two terms and is h = O(T-'i7) for which 
the remainder term 3 is o , ( T - ~ / ~ ) .  

The second-order expansion yields an optimal bandwidth rate, but does not 
yield an optimal bandwidth value. To determine the optimal value of the band- 
width. we select the value of h that minimizes the variance of C. The following 
theorem gives the variance of C. 

THEOREM 4. If Assumptions Al-A9 hold, then under Ho, as T -+ m, 
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ADAPTIVE TESTNG IN ARCH MODELS 155 

PROOF: See appendix. 

REMARK. The first term on the right-hand side of (0.8) is a function of b t ,  
which is the bias of the nonparametric estimator of the score function."' The 
second term in the right-hand side of (0.8) is the variance of A2. Because A2 is a 
weighted degenerate U-statistic, from recent work by Fan & Li (1996) and Hjellvik, 
Yao, and Tjostheim (1996) we expect that C is asymptotically normal with mean 
zero and variance given by Theorem 4. Because bt and $I, (u t )  are functions of g (.), 
the magnitude of the variance of C depends on the underlying density." From 
Theorem 4 we see that the variance of C is of order TP4l7 and strictly positive 
(unless I2 is very small), which suggests that the empirical size will exceed the 
nominal size if critical values from the asymptotic Gaussian distribution are used. 

We now turn to the question of bandwidth selection. Because (0.8) is derived 
under the null hypothesis, selecting h to minimize (0.8) is analogous to selecting 
h to minimize the second-order size distortion.12 The optimal bandwidth from 
Theorem 4 is a function of g(.) and the first three derivatives of g( .) ,  all of which 
are unknown. One could substitute nonparametric estimators of these quantities 
into the bandwidth formula, but nonparametric estimators of the second and third 
derivatives of g(.) can be badly behaved even with moderate sized samples. To 
overcome the difficulty of nonparametrically estimating the higher derivatives of 
g( ), we use a rule-of-thumb bandwidth selection method pioneered by Silverman 
(1986). To control second-order size distortion it is not appropriate to use cross 
validation to select h. Under cross validation, h is of order T-l15, which does not 
minimize the order of C.  

lUTo see that bt is the bias. substitute the standard formulas for the bias of nonparametric 
estimators of g ( , )  and g(')(.) into the approximation 

"The magnitude of p does not affect the second-order term, although ~t does affect the order 
T-I term in the variance, which we have not calculated 

12The second-order size dlstortlon is also a function of the blas and skewness of C \fTe do not 
focus on the b ~ s  and skewness of C because they do not depend on h Because the b ~ s  and 
skewness of C are of larger order (order T-'I2) they could lricrease or decrease the size of the 
test statistic 
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156 LINTON AND STEIGERWALD 

The method works as follows. We calculate the various quantities in (0.8) 
for the standard Gaussian density and thereby determine an optimal bandwidth. 
Because the resulting bandwidth value is second-order optimal if ut is a truncated 
Gaussian random variable, the bandwidth value should be approximately second- 
order optimal under small departures from a truncated Gaussian distribution. If 
the innovation density is a standard Gaussian density, then g(l)(u) = -ug(u), 
g ( 2 ) ( ~ )  = (u2 - l)g(u),  and 9(3)(u) = - (u3 - 3u)g(u). Thus, 7j2 (u) = (u2 - 
I ) ,  I 2  = 2, and b(u) = w 2 ( K ) ,  SO E [ u ; b ( ~ t ) ~ ]  = 3p;(K), E [u t&?(~ t )b (u t ) ]  = 

2p,(K), I;'E(U:~?) - {I;' ~ [ u , d ~ ~ ( u ~ ) b ~ ] } ~  = +$(K) .  We replace E[u:g-'(ut)] 
by a consistent estimator (u;,, - uii,)/3. The rule-of-thumb bandwidth is 

where i7 is an estimator of the standard deviation of the residual iit, while urn,, 
and u,,, are the maximum and minimum respectively of {Gt/5; t = 1, . . . , T) . For 
the Gaussian kernel, p2(K) = 1 and v 2 ( ~ ( ' ) )  = 1/4&.l"he test statistic FC 
that uses ĥ in (0.2) asymptotically minimizes the second-order size distortion, as 
defined above, for the Gaussian density. 

We recognize that if g ( , )  has unbounded support, the right-hand side of the 
asymptotic variance formula of Theorem 4 is infinite. Even so, the bandwidth 
constant estimate is not totally unfounded; it too will increase without bound 
thus reflecting this reality. For example, with Gaussian data urn, - urnin will grow 
at rate In T and so the estimated bandwidth will be larger in magnitude than 
order T - ' / ~ .  By contrast, methods based on the integrated mean square error of 
either j ( . )  or G( ' ) ( . ) ,  such as cross validation, result in a bandwidth magnitude 
that is the same whether or not the support for g(.) is bounded. As a result, 
cross-validation results in a bandwidth that is too small if the support for g(.) is 
unbounded. 

5.2 Bias Reduction 

The bias term bt in Theorem 4 is nonzero for the Gaussian density, and hence 
our procedure has a bias-related variance correction term even in this canonical 
case. To reduce bias, we study here the effect of replacing the standard kernel 
density estimator by the estimator proposed by Jones, Linton, and Nielsen (1995), 
hereafter JLN. The JLN estimator reduces the bias of the density estimator to 
order h4, from order h2, for a11 g(.) possessing four continuous derivatives. It 
also guarantees a positive estimate of g( , )  everywhere, unlike other bias reduction 
methods such as higher-order kernel density estimators. In practice, the reduction 
in bias allows a wider bandwidth to be used, which translates into gains in the 
second-order performance of our test statistics for at least some region of the 

'"ardle & Linton (1994) give the magnitude of vz and p2 for several kernels. 
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ADAPTIVE TESTING IN ARCH MODELS 

(functional) paraineter space. 
The JLN density estirnator based on observed data {u~):=~ is 

where ?(.) is defined in (0.2) and G I ( . )  = $')(.)/?(.). As JLN show, the bi- 
ases of z ( ' ) ( ~ )  and hence of $')(u)/7j(u) are also order h4 compared with or- 
der h2 for $')(u) and $ ' ) ( U ) / ~ ( U )  (provided t,hat g(.) possesses t,wo addit,ional 
continuous derivat,ives). The reduced bias permit,s a faster mean-square error 
rate of n-'lQ as compared with t,he best possible rate of nP4l5 for the standard 
kernel density estimator. This translat,es into a second-order variance correc- 
tion to FC of order n.-81'1: provided h = 0(77-'/~), which is an improvement 
over the order n,-417 correction in Theorem 4. The bias constant for ?j(')(u) is 

bi(u) = ~ ~ ~ ( N - ) ~ ( ~ ) ( U ) ( $ ( U ) } ( ~ ) ;  therefore, t,he bias constant for 

with b (u)  = f ~ : ( K ) ~ ( U ) { ?  (u )} (~) ,  which is the relevant quantity appearing 

in Theorem 4. If g( .)  is the Gaussian density, then b(u) = ; & ( K ) ~ ( U )  and 
bl(u) = - l v i ( K ) ~ ~ ( ~ ) .  In this case, there is. remarkably, a cancellation, and the 
bias of ?j('?(u)/?j(u) is the even better o(h4). This means that if we use the JLN 
estimate in place of the standard kernel density estimate when constructing 7c 
we shall have a second-order correction to the variance that can be made to be 
smaller than n-sl'l in magnitude, i.e. improves on the magnitudes in Theorem 
4.'' This improved performance should also hold for any statistic depending on 

9'" (u)lF(u).  

The results in Section 4 indicate that with a large number of observations, a 
semiparametric test statistic outperforins a quasi-maximum likelihood test statis- 
tic. The question is, how well does a semiparametric test statistic perform with 
a small number of observations? To shed light on the issue, we run sinlulations 
for samples of 100 and 500 observations. Because most financial data sets have 
substantially larger numbers of observations, our results provide conservative es- 
timates of the gains achievable in practice. 

A semiparametric test statistic is asymptotically more powerful than a QYIL 
test statistic if the innovation density is non-Gaussian. Therefore, in the simula- 
tions we conduct the true innovation density is either asymmetric, leptokurtic, or 

''As before, replacing unobserved errors ut by root-T consistently estimated residuals Gt 
makes rio difference to the first-order properties of ~ ( I L )  and hence the second-order properties 
of the sernipararnetric test statistic. 
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158 LINTON AND STEIGERWALD 

platykurtic. Asymmetric innovation densities that have more mass concentrated 
in the tails result in marginal densities for yt that capture the large number of 
outliers and the asymmetric pattern in certain exchange rate series. The spe- 
cific asymmetric densities that we consider are log-normal densities that are con- 
structed from a Gaussian density with variance that takes values (0.01,0.10, 1.00). 
Leptokurtic innovation densities result in marginal densities for y, that capture 
both the large number of outliers and the shape of many daily exchange rate se- 
ries. The specific leptokurtic densities that we consider are t densities with 30, 8, 
and 5 degrees of freedom, respectively. Platykurtic innovation densities result in 
marginal densities for yt that capture the large number of outliers and the effect of 
the random arrival of information that characterize many asset return series. The 
specific platykurtic densities that we consider are bimodal symmetric mixtures of 
Gaussian random variables with means that take values (51, &2, +lo).  In the 
tables summarizing the results each of the densities is denoted by a capital letter 
for Asymmetric, Leptokurtic, or Platykurtic together with a number 1, 2, or 3, 
where a larger number corresponds to a larger departure from a Gaussian density. 
Thus 212 denotes the t density with 8 degrees of freedom. Summary statistics for 
the densities are in Table 1. To allow for sensible comparisons across the differ- 
ent densities, all variables drawn from the densities in Table 1 are subsequently 
rescaled to have mean 0 and variance 1. 

We simulate an ARCH(p) specification with p,(y) = Po + &xlt. For the 
conditional mean we set Bo = 1. Dl = - 1, and take xlt to be i.i.d. Gaussian (0, l)  
and independent of aht(y)ut .  We perform 1000 simulations. 

The test statistics are constructed from the semiparametric and QML estima- 
tors, which are constructed using the method of scoring. Specifically, the QMLE 
is constructed as 

where g7Ys a Gaussian density and X is a parameter that controls the size of the up- 
dating step.'" We iterate (0.11) until s ~ ( ~ ~ ~ n f ,  gn)TJf ' (~<~,,  gn)s;(~;d,,, gn) 
is less than 0.01. 

The semiparametric estimator is constructed as in (0.11) with $ used in place 
of a Gaussian density, where is constructed using the residuals calculated from 
-2- 1 
yr and y; = The nonparametric estimator of g is constructed with the 
quartic kernel K ( u )  = %[1 - u2]*1(1u/ 5 1). 

We study two important issues for practical implementation of semiparametric 
test statistics. First, we compare a standard nonparametric estimator of g, given 
by (0.2), with a JLN reduced-bias estimator of g ,  given by (0.10). Second, we 

"At the beginning of each iteration, X equals 1. If the value of 9bQM does not increase the 
log-likelihood, then X is set to b .  If the resulting value of +kQM does not increase t,he log- 
likelihood the process is repeated, shrinking X by a factor of 2 each time until a step is found 
that increases the log-likelihood. 
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ADAPTIVE TESTING IN ARCH MODELS 159 

Density Summary Statistics 
Name Construction Mean Variance Skewness Kurtosis 

Asymmetric 1 exp ( z )  where z is N (0,0.01) 1.01 0.01 0.30 3.16 
Asymmetric 2 exp ( z )  where z is N (O,0. 10) 1.05 0.12 1.01 4.86 
Asynlrnetric 3 exp ( z )  where z is N (0, 1.00) 1.65 4.67 6.18 113.94 
Leptokurtic 1 t (30) 0.00 1.07 0.00 3.20 
Leptokurtic 2 t (8) 0.00 1.33 0.00 4.50 
Leptokurtic 3 t (5) 0.00 1.67 0.00 9.00 
Platykurtic 1 5 N ( 1  1) + N ( 1 1  0.00 2.00 0.00 2.50 
Platykurtic 2 .5 [N ( -2 , l )  + N (2, I ) ]  0.00 5.00 0.00 1.72 
Platykurtic 3 .5 [N (-10.1) + N (10, I ) ]  0.00 101.00 0.00 1 .04 

compare the value of the smoothing parameter that minimizes second-order size 
distortion, given by h in (0.9), with other values of the smoothing parameter. 
In particular. because the JLN density estimator has reduced bias, we can use a 
smoothing parameter that is larger than h in forming the JLN density estimator.'" 
To determine the value of the smoothing parameter that maximizes the size- 
adjusted power of a semiparametric test statistic we examine the values h = c .  h, 
where c takes values (0.5,l 0,1.5.2.0). 

The first testing problem that we consider is the univariate testing problem. 
Specifically. we study tlie test of the null hypothesis that the model is ARCH(1) 
against the alternative hypothesis that the model is ARCH (2). The ARCH(1) 
specification is ht(yo)2 = 1 + 0.1 (yt-l - 1 + x1t-1)2 and the ARCH(2) specification 
is ht(yo)2 = 1 + 0 l(yt-I - 1 + x ~ t - I ) ~  + 0.5(yt-2 - 1 + ~ ~ ~ - 2 ) ~ .  Thus we test 
a null model with only weak ARCH effects against an alternative model with 
substantially more ARCH effects. 

In Table 2 we compare the positive square-root of tlie Lagrange multiplier test 
statistic constructed from a Gaussian QMLE, denoted QML, with three semipara- 
metric test statistics, for a sample of 100 observations The first semiparametric 
test statistic. denoted SP1, is constructed using the standard nonparametric es- 
timator of g from (0 2) with the value of the smoothing parameter glven by h in 
(0.9). The second semiparametric test statistic. denoted SP2. is constructed using 
the JLN estimator of g from (0.10) with the vdlue of the smoothing parameter 
given by h in (0.9). The third semiparametric test statistic, denoted SP3, is con- 
structed using the JLN estimator of g from (0.10) with the value of the smoothing 

lGBecause the standard density estimator does not offer reduced bias. we restrict attention to 
11 for this estimator. 
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LlNTON AND STEIGERWALD 

Size and Size-Adjusted Power: ARCH(1) vs. ARCH(2) T=100 

Density QML SP1 SP2 SP3 

Size 

Gaussian 0.027 0.030 0.038 0.030 

Size-Adjusted Power 

Gaussian 

A1 

A2 

A3 

L 1 

L2 

L3 

P 1 

P 2 

P 3 

parameter given by 1.5.h.17 Use of the optimal bandwidth derived from second- 
order theory is important. If the simple rule-of-thumb value h = T-? is used 
to construct a semiparametric test statistic, the power is generally reduced by a 
factor of 2. 

17Results for other values of c, namely 0.5 and 2.0, are not separately reported. Reducing 
the  snloot,hing parameter. c = 0.5, reduced the size-adjusted power of a semiparametric test 
statistic for every density. Increasing the smoothing parameter further, c = 2.0, increased the 
size-adjusted power for the leptokurtic densities but reduced. and in some cases greatly reduced, 
the size-adjusted power for the remaining densities. 
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ADAPTIVE TESTING IN ARCH MODELS 161 

The upper panel contains the empirical size of the test statistics for a test with 
a nominal size of five percent. The lower panel contains the size-adjusted power 
for each of the test statistics. To construct the size-adjusted power for each test 
statistic, we use critical values that correspond to an empirical size of five percent 
if the empirical size exceeds five percent and use nominal five percent critical 
values otherwise. Within a panel, each row of the table corresponds to a different 
innovation density and each column corresponds to a different semiparametric 
test statistic. (Tables 3 and 4 are constructed similarly.) The third through fifth 
columns. headed by SP1. SP2, and SP3, respectively. contain the empirical sizes 
for the positive square root of the Lagrange multiplier test statistic constructed 
from each of the nonparametric density estimators described above. For each 
density all four test statistics have empirical size that is below nominal size. 

To compare size-adjusted power, we begin with the semiparametric test sta- 
tistics. In comparing SP1 with SP2, we see that for seven of the ten densities the 
standard density estimator delivers a higher size-adjusted power than the JLN 
density estimator if both use the same value of the smoothing parameter. Only 
for three of the densities with the greatest departures from normality does the 
SP2 test statistic outperform the SP1 test statistic, and in two of these cases 
the power gain is slight. The real advantage in using the JLN density estimator 
comes from the ability to increase the value of the smoothing parameter. For nine 
of the ten densities the JLN estimator with the increased smoothing parameter 
outperforms the standard density estimator and for seven of the ten densities SP3 
outperforms SP2. Again, the three densities where SP2 has highest power repre- 
sent extreme departures from normality. In comparing the size-adjusted power of 
the QLlL test statistic with the preferred semiparametric test statistic SP3, we 
see that for eight of the ten densities the QML test statistic has higher power. 
In general, the relative performance of the semiparametric test statistic improves 
as the departure from normality grows. It appears that a sample size in excess 
of 100 observations is needed to capture the efficiency gains of a semiparametric 
test statistic. 

Because a sample of 100 observations is fairly small, we compare a QML test 
statistic with the preferred semiparametric test statistic for a larger sample of 500 
observations in Table 3. 
Because the sample size is increased, the alternative hypothesis must be changed 
to keep the power below 1. As explained in previous sections, the magnitude of 
the alternative hypothesis shrinks at rate T ' / ~ ,  SO the ARCH(2) specification is 
ht(yo)2 = 1 + 0 l (ytPl  - 1 + z1t-1)2 + 0.22(yt-2 - 1 + ~ ~ ~ - 2 ) ~  The second and 
third columns contain the empirical size for the QML and SP3 test statistics, 
respectively. The fourth and fifth columns contain the size-adjusted power for 
the test statistlcs. For each density, both test statistlcs have empirical size that 
is below nominal size and for seven of the ten densities the size distortion (the 
difference between the empirical size and the nominal size) of SP3 is reduced as the 
sample size increases. In comparing size-adjusted power. we see that for eight of 
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LINTON AND STEIGERWALD 

TABLE 3 
ARCH(1) vs. ARCH(2) T=500 

Density QML SP3 QML SP3 
Gaussian 0.030 0.030 0.945 0.937 
A 1 0.026 0.027 0.920 0.934 
A2 0.024 0.035 0.804 0.879 
A3 0.021 0.027 0.390 0.689 
L 1 0.026 0.025 0.915 0.909 
L2 0.024 0.030 0.844 0.838 
L3 0.027 0.035 0.736 0.752 
P 1 0.030 0.029 0.964 0.972 
P 2 0.034 0.025 0.996 0.997 
P3 0.046 0.000 0.995 0.975 

the ten densities the two test statistics are virtually identical and for the remaining 
two densities SP3 has higher power. Because the two densities for which SP3 has 
higher power are asymmetric, our simulations indicate that for univariate testing 
problems, the most substantial gains from a semiparametric estimator occur with 
asymmetric densities. 

The second testing problem that we consider is the multivariate testing prob- 
lem. Specifically, we study the test of the null hypothesis that the model is 
white noise against the alternative hypothesis that the model is ARCH(2). The 
ARCH(2) specification is the same specification used in the univariate testing 
problem. 

In Table 4 we compare a multivariate QML test statistic, constructed from 
a Gaussian QMLE, with three multivariate semiparametric test statistics, con- 
structed from each of the nonparametric density estimators described above. for 
a sample of 100 observations. Each of the test statistics is formed as a sum of 
scores, given by (0.3) with c a vector of ones. 

The upper panel contains the empirical size of the test statistics for a test with 
a nominal size of five percent. The lower panel contains the size-adjusted power 
for each of the test statistics. For each density all test statistics have empirical 
size that is below nominal size. To compare size-adjusted power, which again is 
simply raw power, we begin with the semiparametric test statistics. In comparing 
SP1 with SP2, we see a sharp contrast with the univariate results. For each of 
the ten densities, the JLN density estimator delivers a higher size-adjusted power 
than the standard density estimator if both use the same value of the smoothing 
parameter. Once again. increasing the value of the smoothing parameter can 
increase the size-adjusted power of a semiparametric test statistic that uses the 
JLN estimator. For nine of the ten densities the JLN estimator with the increased 
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ADAPTIVE TESTING IN ARCH MODELS 

TABLE 4 

Size and Size-Adjusted Power: White Noise vs. ARCH(2) 

Density QhIL SP1 SP2 SP3 

Size 

Gaussian 

A1 

A2 

A3 

L1 

L2 

L3 

P 1 

P 2 

P3 

Size-Adjusted Power 

Gaussian 

A1 

A2 

A3 

L 1 

L2 

L3 

P 1 

P2 

P 3 

smoothing parameter outperforms a standard density estimator and for seven of 
the ten densities SP3 outperforms SP2. In comparing the size-adjusted power of 
the QML test statistic with the preferred semiparametric t'est statistic, SP3, we 
see that for nine of the ten densities the semiparametric test statistic has higher 
power. In contrast to t,he univariate t,esting result, with a sample of only 100 
observations a multivariate semiparametric test statistic outperforms a QML test 
statistic for nine of the ten densities. 
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164 LINTON AND STEIGERWALD 

The semiparametric test statistics are asymptotically optimal, dominating the 
widely used Gaussian test statistics according to standard criteria. The simula- 
tions provide several interesting results on the finite sample performance of our 
proposed semiparametric test statistic. First, even though the second-order opti- 
mal rule-of-thumb bandwidth is derived under the assumption that the innovation 
density is symmetric (and bounded), the method performs very well if the innova- 
tion density is asymmetric (and unbounded). Second, even with a sample of 500 
observations, the semiparametric test delivers power gains only for asymmetric 
innovations for a univariate test. Third, even with a sample of only 100 obser- 
vations, the semiparametric test statistic delivers power gains on the order of 10 
percent for a multiparameter test. 

We thank Steve Fox for help with the computations. We acknowledge financial 
support from the National Science Foundation. 
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To calculate the quantity r;,(Q, g ) :  we first define r t (B,g) .  Let 

Then 

where I't depends only on Ft-l and $(ut(Qo)) is mean zero and independent 
of Ft-l. To construct the efficient score for 4, we use the information ma- 
trix for $. Although there are a number of alternative asymptotically eyuiv- 
alent versions of the information matrix, we find the conditional inforrrlation 
Gn(B,y )  = T-I c:=, E [ % $ $ ~ F ~ - ~ ]  particularly convenient because of the fol- 
lowing representation 
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where I1 = ~ [ $ ? ( u t ) ] ,  I2 = E [ & ( u ~ ) ]  and I12 = E [ $ 1 ( u t ) $ 2 ( ~ t ) ] .  The efficient, 
score is constructed from the relevant elements of the informattion matrix. 

For any vector x with element j denoted x j ,  let 1x1 be the Euclidean norm of 

x ,  that is x 1 = [zj x:] ' . We make the following assumptions: 

A l .  T h e  random variables ul ,  . . . , UT are 2.i.d. with absolutely continuous Lebesgue 
density g ,  and there exists a contiguous set 7-i 2 R o n  which g ( u )  > 0 and 
J R g ( u ) d u  = 1 .  

A2. T h e  moments  u 4 g ( u ) d u  and J $ ~ ~ ( u ) ~ ( u ) d u ,  j = 1 ,2 ,  are finite 

A3 .  T h e  density g i s  twice bourzdedly continuously diflerentiable 

A4.  The  parameter space O i s  a n  open subset of IW"P+' that satisfies various 
~estr ic t ions  such that 

(a) The  process { h : ) g l  is bounded below by a constant h > 0. 

(b)  The  process' { h ; ) ~ ~  is strictly stationary and ergodic. 

(c) The  information matr ix  3 & ( 8 ,  g )  i s  nonsingular at 80. 

(d) The  quantity Eh: is  finite for all t .  

A5 .  The  initial condition density go(Yo; d ) ,  where Yo = ( y o ,  y - I ,  . . . , y-,), i s  con- 
P 

tinuous i n  probability: i.e. go(Yo; dT)  4 go(Yo; Q ) ,  for any BT - 8. 

P 
A6 .  The  regressors {rct)T,, are weakly exogenous for 9 and T-I c:=, x t z ;  - A[, 

where M is  a positive definite matr ix .  

A7.  Both  J [ @ ~ ' ) ( U ) ] ~ ~ ( U ) ~ U  and ~ [ $ ~ ) ( u ) ] ~ g ( u ) d u  are finite. 

A8. T h e  kernel K has bounded support and i s  twice continuously differentiable. 
T h e  bandwidth sequence satisfies: h ( T )  , dT -* 0, e ~ ,  n , ~  -, oo, h(T)n,T -+ 0 ,  
and ~ h ( T ) ~ n , ; ~ e ; ~  -+ x. 

A9.  The  density function g has bounded support. Both  g and K are m a n y  t imes  
contin,uously differentiable, I( nonvanishingly so. 

REMARK: A sufficient condition for A4(c) is that ht have bounded second 
moment, see Weiss (1986).  However, Lumsdaine (1996) weakened this condition 
somewhat, and allows for processes with total roots exceeding one. The conditions 
on the regressors can be relaxed in various directions: for example, Swensen (1985) 
allows for deterministic trends in the regressors, while Jeganathan (1995) allows 
for integrated regressors and derives the more general result of Local Asymptotic 
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Mixed Normality in this case. Assumption A9 is made to simplify algebra for the 
second-order asymptotic theory and is not necessary for the first-order asymptotic 
theory. 

L~h1nr.A 1 (Local Asymptotic Normality). Let AT = L(BT, g )  - L(Bo, g) be 
the log-lzkelzhood ratzo and suppose that assumptzons Al-A6 are satzsfied. T h e n  

and ss(Bo, g) =+ N(O,3se(Oo, g ) ) ,  where convergence is  under  the probability mea- 
sure induced by Bo. Furthermore, the probability measures PT,b, and PT,OT are 
mutually con t ipous  in the sense of Roussas (1972, Definition 2.1, p7): i e .  
PT,Oo (A) --+ 0 if and only if P T , Q ~ ( A )  3 0, for any event A. 

PROOF. Swensen (1985) lists six conditions that together imply the LAN 
property. Linton (1993) verifies the six conditions for a parametric ARCH model 
under the assumption that g is symmetric. The first five conditions follow directly. 
as the verification contained in Linton does not rely on symmetry. The sixth 
condition, which we verify under asymmetry, is 

1 
~ [ - - ~ - ~ 6 ~ l ' ~ ( ~ ~ ) $ ( u t ) ~ t - ~ ]  = 0. 

2  (J2) 

Because ut is an i.i.d. random variable, (.12) follows if 

E$, (ut) + E$,(ut) = 0. 

Integration by parts for E ~ ,  (ut)  reveals 

where the last equality follows from the fact that abso1ut)e continuit,y of g implies 
lim,,, g(u) = lim,,-, g(u) = 0. Integration by parts for E&(ut)  reveals 

where the last equality follows from the fact that boundedness of Eu implies 
litn,,, ug(u) = lim ,,-, ug(u) = 0. w 

REMARK:  Lenlnia 1 provides the key local regularity result needed to estab- 
lish the asymptotic distribution of the parametric test statistics. Our tests are 
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170 LINTON AND STEIGERWALD 

constructed from residuals; the significance of the contiguity property is that it 
enables us to proceed, in many respects, as if the true unobservable errors were 
used instead. This is of considerable help when working with the nonparametric 
estimates. 

PROOF OF THEOREN 4. Let op(small) denote op(max{h2, ~ - ' / ~ h - ~ / ~ ) ) .  - 
Write the dependence of ?c on P explicitly, and make the Taylor expansion 

where p* lies between Do and p. The second term on the right hand side is 
o,(T-'/~), which can be verified by direct but lengthy calculation as in Linton 
(1995). Essentially, the parametric error caused by estimation - of Po is of smaller 
order than the error due to estimating g.  Therefore, FC(P) can be approximated by 
?c(i?,). which implies that the residuals are replaced by unobservable error terms 

its asymptotic equivalent ij, = (u: - m2) /{p(m4 - m:)}1/2 , where rn, = E(u:), 

arriving a t  

The approximation error (in replacing ?@,) by 7,) is of order T - ' / ~ .  We make 
a two term Taylor expansion of 7 ,  about 12-'123:, to give 

,-. 
where we show below that X - I2 = 0,(h2). Let y = ~ ~ ' 1 ~  Cf='=, E:=, $,(ut)ijt-,, 

and write 5 = y+s-y. That the leading term I;"~Y is asymptotically standard 
Gaussian is shown in Section 4.1. We replace 9 - 3: and X̂  - 1 2  by further 
approximations given in Lemmas 2 and 3 below. 

Before that we introduce additional notation. We use subscript t to denote 
evaluation at ut, e.g. gt = g(ut ) ,  $J,, = g l ( u t ) ,  and & = $(ut), and Et to  denote 
expectation conditional on ut .  Let also 3, = Et (&) and 3;') = E~ ($'I),  and write 
A 

gt-gt = Bt+& and 2') -g,(') = B(')+v,('), t where Bt = 3, -gt and B!') = g!') -g,('), 
while = gt - ij, and v,") = 2') - 3,('). From Silverman (1986), the conditional 
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4 ( 4 )  bia.s of the kernel density estimator is B, = h 2 g j 2 ) l l p ( ~ ) / 2  + h g, p 4 ( K ) / 4 !  + 
o ( h 4 )  and the conditional bias of the kernel first derivative estimator is ~ 1 ' )  = 
h 2 g j 3 ) 1 - L 2 ( ~ ) / 2  + h 4 g t ( 5 ) 1 1 . 4 ( ~ ) / 4 !  + 0 ( h 4 ) ,  while the "stochastic" terms arc such that 
1/;' = o , ( T - ' / ' ~ - ~ / ~ )  dominates 1; = o , (T -~ / '~ - ' /~ ) .  Note that the asymptotic 

bias of ?jjl)/?jt is to first order. b, = g ; ' { B ~ ' )  + $ I l t B t }  In what follows we use: 

where max and min are both taken over 1 5 t 5 T. For proof of these results see 
Andrews (1995. Theorem 1 )  and Robinson (1987, Lemma 13). The additional con- 
ditions required for the proofs of second-order properties are mostly unverifiable 
smoothness and moment conditions which we shall assume hold. Our argument 
now parallels those presented in Linton (1995).  We need the following two lemmas 
which are proved below. 

LEhrhl~ 2. Assuming the moment  ezists, ~ ( 5 )  = 0 because of the independence 
A 

of I,/,J,(ut) and it-,. Also, b y  asymptotic expansion 

LEhrhl~ 3. B y  asymptotic expanston 

Substituting (. 14) and ( .15)  into ( .13)  we arrive at the following approximation: 

-112 
;i2 = ~ ~ - ~ / ' y  - I ; ~ / ~ Q ~  - I2 {Ll - 1;'01Y) + o,(small), ( . W  

where the random variables y, Q 1 ,  and C 1  satisfy: (1) var(y) = I z ;  (2) cov(y, Q 1 )  = 

Proof of ( 1 ) - ( 5 )  is obvious; see below for a proof of (6). Substituting into (.16). 
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LINTON AND STEIGERWALD 

-1 2 so that var(C) = 1 ; ' ~ ~  + I;'{& - J2  B1) + op(small), as required. B 

PROOF OF L E ~ I ~ I A S .  First we calculate the variance of Q1, which is a de- 
generate weighted U-statistic. see Fan and Li (1996). Write 4") = xsET(t) qts! 

where ots = T-'hp2 {K!:) - Et(K;:')) with K::) = K(') (v) ! and m, = 

utgt-l Cr=l i it-,, so that 

(1) where mt satisfies Et-j (mt) = 0, j = 0,1,  . . . , p, and mt is independent of & . 
Therefore, 

We claim that the double sum is of smaller order. Consider t = r + p + k, with 
(1) (1) k > 1. The typical terms in E(mr+p+km,VT+p+,VT ) are: 

Now consider t = r +  1. If s = v, then we must haves > r +  1 , s  < r - p ,  and 

because E(iit-p) = 0. 
PROOF O F  LENMA 2.  Write 

7-41) - and make a geometric series expansion of gt /gt, see Hardle and Stoker (1989, 
pp992), to give 
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where 

Our proof has two parts: first the leading terms dl and d2  and finally the rr~nainder 
term Rz. 

(1) We first deal with the leading term dl.  Substituting for gt -gt and dl) -gil), 
we have 

where 

(2) We next examine the term d2 .  Substituting again for ?jt - g, and 2') - Y!'), 
we have 

Collecting terms we have 
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The first line consists of single sums of order 0,(h4). The second line consists 
of single sums of orders in probability Op(T-'h-') and 0,(T-1h-2), respectively. 
The third line is a U-statistic of order 2 and is Op(h2~-1/2h-1/2) .  The fourth line is 
a U-statistic of order 2 and is OP(h2~-1/2h-3/2  ). Both these lines are uncorrelated 
with y. The fifth line is a U-statistic of order 3 and is O , ( ~ - l h - ~ ) ,  while the sixth 
line is a U-statistic of order 3 and is O,(T-'h-I). 

(3) To deal with the remainder terrn R2 we use crude bounds a s  in Robinson 
(1987). By the Cauchy-Schwarz inequality 1x2 1 is less than or equal to 

{ ( r  + 1) !}-I {min$}-' {min st)-' T I / '  {may - gt 1)' {T-1 C? %=I zT t = l  u2ij2 t t - 2  

112 
x [IT-' xbi &t} {max 15 - gtii + {max [dl) - gj')~}] , 

which is o , ( T - ~ / ~ ) ,  provided r 2 2. - 2 
PROOF OF L E ~ I A  3. m i t e  $5, - $it = ?$J~,(&, - $5,) + (G,, - 1..2t)2. and 

make the same geometric series expansion for $,, - q2,, to obtain 

where p,(.) is as defined above. The leading terms are 

We only need collect the bias terms, because the stochastic terms are 0,(n-'/2) 
or smaller, and get multiplied by y in (.13). We have 

All but the first term on the right hand side contributes op(small). 
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